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(a) Ondes P
Figure — Ondes P et S
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Figure — 6 km/s (ondes P) vs 4 km/s (ondes S)
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Principe

DSP sz s
Srpos Différentes étapes :

e Acquisition de données en temps réel (SeedLink)

Reconnaissance d'un séisme et mesure automatique des
temps

Théorie

Calcul de la position et de la magnitude
Modélisation de la propagation des ondes sismiques

Méthode numérique d'optimisation de fonction a plusieurs
variables pour la multilatération

Calcul de la magnitude
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Acquisition des données

Name

Host

AusPass
BGR
CISMID
ENS

Red Sismica Baru

RESIF

SANET

RSIS

SCSN-USC (South Carolina Seismic Network)
Seisme IRD

Staneo

SNAC NOA

TexNet

Thai Meteorological Department

UFRN (Universidade Federal do Rio Grande do Norte)
Unical Universita Della Calabria

UNITS Universita degli studi di Trieste
UNIV-AG Université des Antilles

Universidade de Evora

Universidad de Colima

UPR

USGS

USP-IAG

auspass.edu.au
eida.bgr.de
www.cismid.uni.edu.pe
ephesite.ens.fr

helis.redsismicabaru.com
rtserve.resif.fr
147.213.113.73
rsisl.on.br
eeyore.seis.sc.edu:6382
rtserve.ird.nc
vibrato.staneo.fr
snac.gein.noa.gr
rtserve.beg.utexas.edu
119.46.126.38
sislink.geofisica.ufrn.br
www.sismocal.org
rtweb.units.it
seedsrv0.ovmp.martinique.univ-ag.fr
clv-cge.uevora.pt
148.213.24.15
worm.uprm.edu
cwbpub.cr.usgs.gov
seisrequest.iag.usp.br




Extraction des temps d'arrivée
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Figure — Exemple d'un enregistrement de sismographe



Convolution

DSP et —  f(x)=sinx
Sismologie —  g(x) = cos2x 7Z
— h(x) = f(x) + 8(x)
/\ —  f(x) =sinx
05 — gx)= cost
— h(x) = f(x) - g(x)
—6 ) 4 = -2 - _
0.5

- X =sinx
05 —  g(x) =cos2x
—h) = (frg)(x) =0
6 -5 4 A -2 - 1 2 3 5
0.8




Convolution

Si'f,if,f;e Soit f et g deux fonctions intégrables sur R. Pour tout t € R,

Dalibard

(F+8)0)= [ fx) gt~ x)ds

[e.o]

Soit f et g deux fonctions de Z dans C. Pour tout n € Z,

+o00
(Fxg)lnl = flml-gln—m]

m=—0o0

Pour des fonctions périodiques, on intégre sur une période.
Pour tout t € R,

(+8)) = [ 1) (e )



Propriétés algébriques de la convolution

DSP .
St m Commutatif

Dalibard .
On remarquera que si

(Feg)(®)= [ 700+ (e —x)ae

Et on fait le changement de variable v =t — x

On a

—00

(Fe)e)= [ Flt—u)-g(u) = du

+oo

—+00
_ /_OO f(t — u) - g(u)du = (g * £)(t)



Propriétés algébriques de la convolution

DSP . . .
St m Distributif

Dalibard f * (g —|— h) — f k g _|_ f * h

Par linéarité de l'intégrale.

m Associatif
(Fxg)xh="x(gx*h)

C'est une conséquence du théoréme de Fubini.

L'espace des fonctions intégrables muni de * forme un
demi-groupe commutatif (car pas d'élement neutre).
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Exemple avec des combinaisons de dés

Somme donnant 2 :

Somme donnant 3 :

Somme donnant 4 :

Somme donnant 5 :

2[3]a]5]6]
[6]5]4]3]2
2[3]4]5]6]|
16]5]4]3][2]1
2[3]4]5]6]|
16]5]4]3]2]1
2[3]4]5]6]|
16]5[4[3]2]1




Exemple avec des combinaisons de dés
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Delibard Somme donnant 6 :
6 41321
Somme donnant 7 : 1(2(3[4|5]|6
5141321
Somme donnant 8 : ’ 1(2(3[4|5]|6
6/5/4[3[2]1]
Somme donnant 9 : ’ 1 | 213(4(5|6
6/5/4[3]2]1]




Exemple avec des combinaisons de dés
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Delibard Somme donnant 10 : ’1|2|3 4156
6/5/4[3]2]1]
Somme donnant 11 : ’1|2|3|4 5|6
6/5[4]3]2]1]
Somme donnant 12 : ’1|2|3|4|5 6
6/5/4[3]2]1]




avec les convolutions

Distribution des sommes
DSP et 7 — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fonction nulle puis constante égale a 1 puis nulle

Sismologie ! . . .

i Y
y

Fréquence
S
f(x)

. 4, 3,2, 1,0, 8])

].[le,1,1,1,1,1,1,8])

Figure — numpy confirme ce résultat



Intuition sur la convolution
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Intuition sur la convolution
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Intuition sur la convolution

05+

VAN
— cos(2x) sin(

[\Af




Moyennage

DSP et Moyennage par convolution

Sismologie
T T T T T T T T T
Dalibard sl — 8 . o
—g*i
61 B
> 4l B
ol B
ok B
| | | | | | I | | | | |




Transformée de Fourier discréte

DSP et
Sismologie a= [aO7 al7 cy an—l] et b - [b07 le ey bkfl]

Dalibard (a * b)[p] — Z albp—l

P(X) =Yg aiX' et Q(X) = X[y aX!
(ax b)[p] est le coefficient du terme de degré p dans le produit :

PQIX) =31 o( X aib )X
icz.

i
0<p—i<k—1
0<i<n—-1

On va évaluer en wk = e="n et utiliser la rigidité des
polynémes.



Utilisation de la rigidité des polynomes

DSP , _ 2kim T N
St On va évaluer en wX = e~ "n , multiplier deux 3 deux les
Dalibard résultats et utiliser la rigidité des polynémes pour récuperer les

coefficients finaux.



Radix-2 decimation-in-time (DIT) - Factorisation

Cooley-Tukey

DSP et A _ n—1 _ i k . N
S E\{aluer notrfa Polypome P(.x.) => "o aix' en les wy revient a
N faire la multiplication matricielle suivante :
0
0] [ PED)
f P(wn)
R = = X
n—1
fo—1 P(wp™)
1 1 1 1
1w, wh w1 o
2(n—1 a
— |1 w% wﬁ wn(" ) 1
a1 2An-1) (eDeen)| L3
1 wp Wh ceewp



Radix-2 decimation-in-time (DIT) - Factorisation

Cooley-Tukey

DSP . N
St On se restreint au cas ou n = 2P (p € N)
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On note la matrice de Vandermonde transposée, qui permet de
calculer le DFT pour tous nos coefficients,

1 1 1 e 1
1wl w? e w1
For = 1 UJ% wﬁ e w%("*l)
Lol 200D D)
n n n

On prend cette matrice diagonale,

1 0 0 0
0 wps 0 0

Dy |0 0 W 0
0 0 0 ... W2l

2p—1



Radix-2 decimation-in-time (DIT) - Factorisation
Cooley-Tukey
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Blocs diagonaux, de I'ordre de O(n) opérations :
a ﬁ p=l—2
0

| (e ) [ | )|
p—1
R=Fp . =
: \IZP—l Dyp—1 }\ Fap— 1/ Ell

an—
nt Récurrence a3

an—3

an—1

Coefficients d'indice im_pairT




Radix-2 decimation-in-time (DIT) - Factorisation

Cooley-Tukey

DSP 7 L y .
St On évalue la compléxité de I'algorithme.
On note u, sa complexité en fonction de p et C, sa complexité

en fonction de n.

Dalibard

Compléxité du produit sur la diagonale

12
Upr1 = A-2PTL 4 2y

Traitement des coefficients par récurrenceT

On factorise par la solution homogéne, ;’ﬁii =A+ g—ﬁ
»=u+A-p

up=up-2P+A-p-2°P

Or p=logyn

Donc C; = tiog, n = tp - N+ A-logy n-n= O(nlog n)
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On peut montrer que :

1 1 1
1wt w2
Fpl=24 |1 @ @
1 w—n,}—l 2('n—1)
Eton a:
dao ﬁ)
di fl
A=| | | =F'R=Fp'| |
dpn—1 fnfl




DSP et . 7 . N .
Sismologie Le conjugué passe au produit et a la somme, donc aussi pour

Dalibard les matrices (prendre le conjugué d'une matrice c'est prendre le
conjugué des termes de la matrice).

On peut donc utiliser la méme technique, en prenant le

conjugué avant d'appliquer un FFT et en le prenant aprés puis
en renormalisant.



Passage du domaine temporel au domaine

fréquentiel

DSP et . .. .. . . N
Sizmologie Le fait de multiplier par ces coefficients spécifiques, revient a

Dalibard décomposer en ondes sinusoidales de différentes fréquences et
phases notre signal.




Corrélation croisée

DEIP i Si on définit ?(t) = f(—t)

Sismologie

Dalibard s . . s
" La corrélation croisée de f et g est

(g + F)(t) = [°, Flx — t)g(x) dx




Calcul du temps de propagation selon iasp91

DSP et iasp91 Velocity Model
Sismologie velocity (km/s)

0 2 4 6 8 10 12 14

3000 4 r

depth (km)

3500 r

4000 r

4500 L

5000 r

5500 - r

6000 - r

—— 1ASPS1 (Vp,kim's), Kennett & Engdahi, 1981, at (40.0,-120.0)

s —— 1ASPS1 (Vs, kmis), Koot & Engdahl, 1951, at (40.0.-1200)
IRIS s ecuramsiproaucisieme:

(b)




Tabulation et interpolation

DSP et
Sismologie

Dalibard

a00

Swave Value

600

00

200

s

w00
Depth (i,

Figure — Visualization des deux tables précalculées



Fonction d’erreur

DSP et Latitude et longitude estimée

Sismologie ﬁ vDate de début du séisme estimée

BEiE E( depth , lat , lon , epoch , obs )=

Profondeur estimée

Temps de propagation calculé par le modéle

Calcul de I'angle entre le seis+—uographe et la position estimée du séisme

v 2
(obs;S — epoch) — S(depth, greatCircleAngle(/at, lon, lat;, lon;))

Multilatération
Z i

obs;S — epoch

Renormalisation f

On fait la moyenne quadratique pour avoir |'écart

(obs;P — epoch) — P(depth, greatCircleAngle(/at, lon, lat;, lon;)) 2
obs; P — epoch



Implémentation de la fonction d’erreur
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Figure — Implémentation de la fonction d'erreur

Multilatération



Méthode de Nelder-Mead
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Multilatération

Figure — Une itération de Nelder-Mead sur un espace de dimension 2



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau



Méthode de Nelder-Mead
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Multilatération

Figure — Nelder-Mead sur la fonction de Himmelblau
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Formule de calcul de magnitude sur |'échelle

Richter

My, = logg [Aol?d)]

ou A correspond a I'amplitude maximale mesurée (en m) par le
sismographe et Ay(d) un coefficient de correction qui dépend
de la distance () a I'epicentre et dont le calcul différe selon les
modeles employés (généralement on utilise une table de
correrlation empirique).

On utilisera la formule empirique de Tsuboi (Université de
Tokyo) :
ML = |Og10 A + 173 |Og10 A — 083

ol A est I'amplitude en micrometres et A est la distance en
kilomeétres.
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Tableau

Description MMI Typique Effets Moyens du Séisi

1.0-19 Micro | Micro-séismes, non ressentis. Enregistrés par les sis-
mographes.

2.0-29 Mineur | Légerement ressenti par certaines personnes. Aucun
dommage aux batiments.

3.0-39 Léger 1nat Souvent ressenti, mais cause rarement des dégats. Se-
cousses perceptibles dobjets a lintérieur.

4.0-49 Faible VavVv Secousses intérieures notables et bruits de cliquetis.
Légérement ressenti a lextérieur. Dégats minimes pos-
sibles.

5.0-5.9 Modéré VIavi Peut endommager les batiments mal construits; res-
senti par tous. Peu ou pas de dégits aux batiments
solides.

6.0-6.9 Fort Vil a IX Dégats modérés aux structures solides ; dégats séveres
aux structures faibles. Ressenti sur de grandes régions.

7.0-79 Majeur VIII ou plus Dégats majeurs et effondrements possibles. Dom-
mages concentrés dans un rayon de 250 km.

Tres fort VII+ Destructions majeures a totales. Dommages sur des
zones trés vastes. Ressenti a trés grande distance de
|épicentre.

Extréme X1l Destruction quasi-totale, dégats graves ou effondre-

ment de tous les batiments. Modification du relief.
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Figure — Mon estimation (avec les données RaspberryShake)
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Figure — Estimation de I'USGS

Figure — Mon estimation (avec les
données RaspberryShake)
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