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1 Séismes

1.1 Introduction

Un séisme ou tremblement de terre est une secousse du sol résultant de la libération brusque d’énergie
accumulée par les contraintes exercées sur les roches. Cette libération d’énergie se fait par rupture le long
d’une faille, généralement préexistante. Plus rares sont les séismes dus à l’activité volcanique ou d’origine
artificielle (explosions par exemple). Le lieu de la rupture des roches en profondeur se nomme le foyer ; la
projection du foyer à la surface est l’épicentre du séisme. Le mouvement des roches près du foyer engendre
des vibrations élastiques qui se propagent, sous la forme de paquets d’ondes sismiques, autour et au travers
du globe terrestre.

1.2 Ondes P et S

Les ondes sismiques, ou ondes élastiques, sont des mouvements vibratoires qui se propagent à travers un
milieu matériel et peuvent le modifier irréversiblement si leur amplitude est suffisante. Elles sont engendrées
par un événement initial, généralement un séisme. L’impulsion de départ déplace des atomes, qui en poussent
d’autres à leur tour avant de reprendre leur place, ces déplacements oscillatoires se propageant ensuite de
proche en proche. Un séisme émet des ondes dans toutes les directions de l’espace.

La physique des milieux élastiques est régie par l’équation de Navier, qui implique l’existence de deux grands
types d’ondes, mises en évidence expérimentalement : les ondes de volume qui traversent l’intérieur de la Terre
et les ondes de surface qui se propagent dans une couche d’épaisseur limitée en suivant la surface terrestre.
Les ondes de volume se subdivisent par ailleurs en ondes longitudinales (ondes P) et transversales (ondes S).

Figure 1 – Ondes P Figure 2 – Ondes S

1.3 Différence de vitesse de propagation

Les ondes P ou ondes primaires, appelées aussi ondes de compression (en anglais Pressure waves) ou ondes
longitudinales. Le déplacement du sol qui accompagne leur passage se fait par des dilatations et des com-
pressions successives. Ces déplacements du sol sont parallèles à la direction de propagation de l’onde. Elles
se propagent dans tous les milieux et sont les plus rapides (autour de 6 km/s près de la surface), parcourant
le chemin le plus court, même par noyau terrestre, et sont donc les premières enregistrées sur les sismo-
grammes. Elles sont responsables du grondement sourd que l’on peut entendre au début d’un tremblement
de terre.

Les ondes S ou ondes secondaires, appelées aussi ondes de cisaillement (Shear waves) ou ondes transversales.
À leur passage, les mouvements du sol s’effectuent perpendiculairement au sens de propagation de l’onde.
Ces ondes ne se propagent pas dans les milieux liquides, elles sont en particulier arrêtées par le noyau externe
de la Terre. Leur vitesse est d’environ 4 km/s. Elles apparaissent en deuxième sur les sismogrammes.
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Figure 3 – 6 km/s (ondes P) vs 4 km/s (ondes S)

On peut donc exploiter les temps d’arrivée de ces différentes ondes pour localiser un séisme.

2 Théorie

2.1 Principe

Différentes étapes :
1. Acquisition de données en temps réel (SeedLink)
2. Reconnaissance d’un séisme et mesure automatique des temps
3. Calcul de la position et de la magnitude

(a) Modélisation de la propagation des ondes sismiques
(b) Méthode numérique d’optimisation de fonction à plusieurs variables pour la multilatération
(c) Calcul de la magnitude

2.2 DSP

2.2.1 Acquisition des données

On utilise le protocole Seedlink pour récupérer les données des sismographes en temps réel.

Name Host
AusPass auspass.edu.au
BGR eida.bgr.de
CISMID www.cismid.uni.edu.pe
ENS ephesite.ens.fr
GEOFON, GFZ geofon.gfz-potsdam.de
GEONET link.geonet.org.nz
Geoscience Australia seis-pub.ga.gov.au
GSRAS (?) 89.22.182.133
Helsinki finseis.seismo.helsinki.fi
Haiti ayiti.unice.fr
ICGC ws.icgc.cat
IDA Project rtserve.ida.ucsd.edu
IFZ data.ifz.ru
IPGP rtserver.ipgp.fr
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IRIS DMC rtserve.iris.washington.edu
IRIS Jamaseis jamaseis.iris.edu
ISNET - UNINA 185.15.171.86
LMU erde.geophysik.uni-muenchen.de
NIGGG 195.96.231.100
NRCAN earthquakescanada.nrcan.gc.ca
OBSEBRE obsebre.es
OGS nam.ogs.it
Oklahoma University rtserve.ou.edu
ORFEUS eida.orfeus-eu.org
PLSN (IGF Poland) hudson.igf.edu.pl
Red Sìsmica de Puerto Rico 161.35.236.45
Red Sìsmica Baru helis.redsismicabaru.com
RESIF rtserve.resif.fr
SANET 147.213.113.73
RSIS rsis1.on.br
SCSN-USC (South Carolina Seismic Network) eeyore.seis.sc.edu:6382
Seisme IRD rtserve.ird.nc
Staneo vibrato.staneo.fr
SNAC NOA snac.gein.noa.gr
TexNet rtserve.beg.utexas.edu
Thai Meteorological Department 119.46.126.38
UFRN (Universidade Federal do Rio Grande do Norte) sislink.geofisica.ufrn.br
Unical Universita Della Calabria www.sismocal.org
UNITS Università degli studi di Trieste rtweb.units.it
UNIV-AG Université des Antilles seedsrv0.ovmp.martinique.univ-ag.fr
Universidade de Évora clv-cge.uevora.pt
Universidad de Colima 148.213.24.15
UPR worm.uprm.edu
USGS cwbpub.cr.usgs.gov
USP-IAG seisrequest.iag.usp.br
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2.2.2 Extraction des temps d’arrivée

Figure 4 – Exemple d’un enregistrement de sismographe

On a un signal comme ça, on peut facilement voir l’onde P et l’onde S. Mais comment faire pour extraire ces
temps d’arrivée automatiquement ? Notamment quand on aura des centaines de mesures venant de partout
dans le monde ? Pour cela on va faire un détour par des maths.

2.2.3 Convolution

Si on a deux fonctions, quelles opérations peut-on faire pour avoir une nouvelle fonction ?

La plus simple semble être les additionner.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1.5

−1

−0.5

0.5

1

f(x) = sin x

g(x) = cos 2x

h(x) = f(x) + g(x)

x

y
f(x) = sin x

g(x) = cos 2x

h(x) = f(x) + g(x)

Une autre façon serait de les multiplier.
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−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

f(x) = sin x

g(x) = cos 2x

h(x) = f(x) · g(x)

x

y
f(x) = sin x

g(x) = cos 2x

h(x) = f(x) · g(x)

Mais il existe aussi une autre opération, la convolution.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

f(x) = sin x

g(x) = cos 2x

h(x) = (f ∗ g)(x)x

y
f(x) = sin x

g(x) = cos 2x

h(x) = (f ∗ g)(x) = 0

Qui a de nombreuses applications dans le traitement d’images, la théorie de la probabilité, dans la solution
d’équations différencielles (température), et comme nous le verrons (aussi la multiplication de polynômes).

On définit formellement la convolution comme un produit sur l’espace des fonctions intégrables.

Soit f et g deux fonctions intégrables sur R.

Pour tout t ∈ R,
(f ∗ g)(t) =

∫ +∞

−∞
f(x) · g(t − x)dx

Dans le cas discret on utilisera une somme.

Soit f et g deux fonctions de Z dans C.
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Pour tout n ∈ Z,

(f ∗ g)[n] =
+∞∑

m=−∞
f [m] · g[n − m]

et dans le cas de fonction périodiques, il suffit de faire l’intégrale sur une période. Pour tout t ∈ R,

(f ∗ g)(t) =
∫ T

0
f(x) · g(t − x)dx

(on peut également généraliser cela à des fonctions discretès périodiques)

2.2.4 Propriétés algébriques de la convolution

— Commutatif

On remarquera que si
(f ∗ g)(t) =

∫ +∞

−∞
f(x) · g(t − x)dx

Et on fait le changement de variable u = t − x

On a
(f ∗ g)(t) =

∫ −∞

+∞
f(t − u) · g(u) − du =

∫ +∞

−∞
f(t − u) · g(u)du = (g ∗ f)(t)

— Associatif
(f ∗ g) ∗ h = f ∗ (g ∗ h)

C’est une conséquence du théorème de Fubini.
— Distributif

f ∗ (g + h) = f ∗ g + f ∗ h

Par linéarité de l’intégrale.

L’espace des fonctions intégrables muni de ∗ forme un demi-groupe commutatif (car pas d’élement neutre).

Pourquoi une telle construction ?

Déjà à quoi ça ressemble ?

Si on voulait compter le nombre de combinaisons de dés qui donnent un certain total, on les disposerait en
liste, on metterait une d’elle à l’envers et on regarderait le nombre de dés qui s’alignent à chaque fois.
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Somme donnant 2 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 3 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 4 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 5 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 6 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 7 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 8 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 9 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 10 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 11 : 1 2 3 4 5 6
6 5 4 3 2 1

Somme donnant 12 : 1 2 3 4 5 6
6 5 4 3 2 1
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On obtient les fréquences d’apparition des différentes combinaisons. Nous pouvons également remarquer que
si à la place de rajouter 1 à chaque fois, on ponderait les probabilités et faisait le produit des probabilités
qui se trouvent face à face, on aurait également le résultat pour le cas non équiprobable.

On vient de faire la convolution entre cette fonction et elle même.

−1 1 2 3 4 5 6 7 8

1

x

f(x)

Fonction nulle puis constante égale à 1 puis nulle

Figure 5 – numpy confirme ce résultat

On remarque que si on le fait dans le cas discret, on a des valeurs en plus sur les bords que l’on peut ignorer.

Faire la convolution revient donc à retourner une des listes des coefficients et le résultat est une fonction
qui à un décalage t entre les deux listes associe une somme des produits deux à deux des coefficients qui se
retrouvent en face l’un de l’autre par ce décalage.
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−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

x

y
cos(2x) sin(−x)

On voit que c’est nul dans ce cas.

2.2.5 Moyennage

Si on applique la fonction f
6 à une fonction g quelconque on observe une sorte de moyennage qui se fait entre

6 valeurs proches.

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

x

y

Moyennage par convolution

g

g ∗ f
6

Ce processus est fait en deux dimensions sur des images avec differentes fonctions pour avoir des effets
comme la détection de bord ou le floutage.

2.2.6 Transformée de Fourier discrète

Si on doit faire la convolution de deux listes a et b telles que a = [a0, a1, ..., an−1] et b = [b0, b1, ..., bk−1],

On a (a ∗ b)[p] =
∑
i∈Z

0≤p−i≤k−1
0≤i≤n−1

aibp−i
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On reconnait la formule du produit des polynômes P (X) =
∑n−1

i=0 aiX
i et Q(X) =

∑k−1
j=0 ajXj

(a ∗ b)[p] est le coefficient du terme de degré p dans le produit

PQ(X) =
∑p

j=0(
∑
i∈Z

0≤p−i≤k−1
0≤i≤n−1

aibj−i)Xj

Bon, de premier abord, ça n’a pas l’air de beaucoup nous aider, le produit de polynômes est O(n2).

Mais pour un polynôme, du fait de leur rigidité, on peut juste évaluer leur produit en un nombre fini de
points pour retrouver les coefficients.

Et donc l’idée si on avait un nombre discret de coefficients serait de les traiter comme les coefficients d’un
polynôme, on les évalue un certain nombre de fois et on multiplie ensemble les évaluations, puis on retrouve
les coefficients en résolvant le système de Vandermonde correspondant.

Le problème c’est que cela semble prendre plus de temps, un pivot de Gauss est en O(n3)

Mais si on choisit d’évaluer nos valeurs en les racines de l’unité, on a un système plus simple à résoudre.

On va pouvoir faire les opérations en O(n · log(n))

Les coefficients que l’on obtient quand on évalue en les ωk
n = e− 2kiπ

n valeurs sont appellés la transformation
de Fourier discrète TFD (un équivalent discret de la transformation de Fourier continue). Il existe aussi
d’autres algorithmes.

2.2.7 Radix-2 decimation-in-time (DIT) - Factorisation Cooley-Tukey

Evaluer notre polynôme P (x) =
∑n−1

i=0 aix
i en les ωk

n revient à faire la multiplication matricielle suivante :

R =


f0

f1
...

fn−1

 =


P (ω0

n)
P (ω1

n)
...

P (ωn−1
n )

 =



1 1 1 · · · 1
1 ω1

n ω2
n · · · ωn−1

n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

... . . . ...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n




a0

a1
...

an−1



On reconnaît la matrice de Vandermonde transposée associée à l’évaluation en les ωk
n

On se restreint au cas où n = 2p (p ∈ N) pour simplifier l’explication même si en théorie ça ne change pas
grand chose vu qu’il y a des algorithmes généraux possibles et on peut rajouter des 0 à la fin pour avoir une
liste de taille 2p.

On note la matrice de Vandermonde transposée, qui permet de calculer le DFT pour tous nos coefficients,

F2p =



1 1 1 · · · 1
1 ω1

n ω2
n · · · ωn−1

n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

... . . . ...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n


On peut permuter les lignes, à la fin, ce qu’on a c’est que, du fait des propriétés des racines de l’unité,
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si on note, D2p−1 =



1 0 0 · · · 0
0 ω2p−1 0 · · · 0
0 0 ω2

2p−1 · · · 0
...

...
... . . . ...

0 0 0 · · · ω2p−1−1
2p−1


est :

R = F2p


a0

a1
...

an−1

 =

 I2p−1 D2p−1

I2p−1 − D2p−1

 F2p−1 0
0 F2p−1





a0

a2
...

a2p−1−2

a2p−1

a1

a3
...

an−3

an−1



Blocs diagonaux, de l’ordre de O(n) opérations

Coefficients d’indice pair

Coefficients d’indice impair

Récurrence

On évalue la compléxité de l’algorithme.
On note up sa complexité en fonction de p et Cn sa complexité en fonction de n.

up+1 = A · 2p+1 + 2up

Compléxité du produit sur la diagonale

Traitement des coefficients par récurrence

On factorise par la solution homogène, up+1
2p+1 = A + up

2p

up

2p = u0 + A · p

up = u0 · 2p + A · p · 2p

Or p = log2 n

Donc Cn = ulog2 n = u0 · n + A · log2 n · n = O(n log n)

2.2.8 IFFT

On peut montrer que : F −1
2p = 1

2p



1 1 1 · · · 1
1 ωn

1 ωn
2 · · · ωn

n−1

1 ωn
2 ωn

4 · · · ωn
2(n−1)

...
...

... . . . ...
1 ωn

n−1 ωn
2(n−1) · · · ωn

(n−1)(n−1)


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A =


a0

a1
...

an−1

 = F −1
2p R = F −1

2p


f0

f1
...

fn−1


Le conjugué passe au produit et à la somme, donc aussi pour les matrices (prendre le conjugué d’une matrice
c’est prendre le conjugué des termes de la matrice).

A = A = F −1
2p R = F −1

2p R = 1
2p F2pR

On peut donc utiliser la même technique, en prenant le conjugué avant d’appliquer un FFT et en le prenant
après puis en renormalisant.

2.2.9 Passage du domaine temporel au domaine fréquentiel

Sans passer trop de temps dessus, le fait de multiplier par ces coefficients spécifiques, revient à décomposer
en ondes sinusoidales de différentes fréquences et phases notre signal. Il y a beaucoup d’applications dans
d’autres domaines. Mais ce qui est remarquable c’est que pour calculer plus rapidement notre résultat. On
est passé par une autre réprésentation.

Maintenant qu’on peut calculer des convolutions rapidement, revenons à notre problème.

2.2.10 Corrélation croisée

Si on définit f̃(t) = f(−t)

La corrélation croisée de f et g est (g ∗ f̃)(t) =
∫ ∞

−∞ f(x − t)g(x) dx

Ou sur une seule période pour une fonction périodique.

On va donc faire glisser les fonctions dans le même sens et multiplier les valeurs de la fonction évaluée en
ses points ensembles deux à deux puis faire la somme.

Quand les fonctions sont similaires et bien alignées, alors, on multiplie les grandes valeurs ensemble et les
petites valeurs ensemble et donc on a résultat grand, alors que quand elles ne le sont pas, on multiplie les
grandes valeurs avec les petites valeurs et on aura un résultat plus petit.

On prend le conjugué pour que si c’est des fonctions complexes, que quand elles s’alignent elles donnent une
plus grande valeur au lieu d’une plus petite à cause de la valeur imaginaire.

Et donc on ne regardera que la partie réele et à quel point elle est grande.

Donc si on a une fonction f et une fonction g où g est dans f mais avec un certain retard τ alors (g ∗ f̃)
sera maximale en τ
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Ainsi, si on a un enregistrement de référence pour nos différentes ondes P et S alors on peut utiliser la
corrélation croisée entre eux et le signal en temps réel pour détecter ces ondes et mesurer avec exactitude le
temps d’arrivée de ces ondes.

2.3 Modélisation de la propagation des ondes sismiques

2.3.1 Calcul du temps de propagation selon iasp91

On va utiliser un modèle de vitesse de propagation des différentes ondes sismiques selon la profondeur et
tracer des rayons pour calculer le temps de propagation. On remarque que la courbure qu’on obtient est du
à la réfraction. L’onde va emprunter le chemin le plus court, même si cela veut dire aller plus en profondeur
d’abord.
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Figure 6 – TauPy Figure 7 – iasp91

2.3.2 Tabulation et interpolation

Figure 8 – Visualization des deux tables précalculées

2.4 Multilatération

Une fois qu’on a une table des différentes vitesses de propagation pour les différentes profondeurs et les
ondes P et S ainsi que nos mesures, on peut résoudre l’équation avec nos mesures.

Sauf qu’on a plusieurs mesures donc on veut une moyenne pour nos mesures pour avoir le meilleur résultat
et nos équations ne sont pas linéaires comme vous pouvez le constater sur la diapositive précédente.

Ainsi, on va utiliser une méthode pour trouver le minimum sur une fonction d’erreur.
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2.4.1 Fonction d’erreur

Voici notre fonction d’erreur :

E( depth , lat , lon , epoch , obs ) =
∑

i

 (obsiS − epoch) − S(depth, greatCircleAngle(lat, lon, lati, loni))

obsiS − epoch


2

+
((obsiP − epoch) − P(depth, greatCircleAngle(lat, lon, lati, loni))

obsiP − epoch

)2

Profondeur estimée

Latitude et longitude estimée
Date de début du séisme estimée

Tableau des observations

Temps de propagation avec la date de début du séisme estimée

Temps de propagation que l’on devrait observer compte tenu du modèle
Calcul de l’angle entre le seismographe et la position estimée du séisme

Renormalisation pour éviter de favoriser les temps de propagation longs

On fait la moyenne quadratique pour avoir l’écart

Idem mais pour l’onde P

Figure 9 – Implémentation de la fonction d’erreur

2.4.2 Méthode de Nelder-Mead

La méthode d’optimisation que j’utilise est celle de Nelder-Mead. Elle permet de trouver un minimum local
dans une fonction continue avec une recherche directe heuristique.

Elle utilise ce qu’on appelle des simplexes, c’est la généralisation des triangles à plus de dimensions, en
dimension 1 c’est une ligne, en dimension 3 ça correspond à un tetraèdre, à chaque fois en dimension n, il
n + 1 côtés (il y a 4 dimensions ici donc il faudra n + 1 = 5 cotés au simplexe).

L’approche la plus simple consiste à remplacer le plus mauvais point par un point reflétant le centroïde des
n points restants. Si ce point est meilleur que le meilleur point actuel, nous pouvons essayer de l’étirer de
manière exponentielle le long de cette ligne. En revanche, si ce nouveau point n’est pas beaucoup mieux que
la valeur précédente, nous traversons une vallée et nous rétrécissons le simplexe vers un meilleur point.
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Figure 10 – Une itération de Nelder-Mead sur un espace de dimension 2

2.5 Magnitude sismique

On utilise l’echelle logarithmique de Richter pour quantifier la magnitude d’un séisme pour laquelle on a la
formule suivante :

ML = log10

[
A

A0(δ)

]

où A correspond à l’amplitude maximale mesurée (en m) par le sismographe et A0(δ) un coefficient de
correction qui dépend de la distance (δ) à l’epicentre et dont le calcul diffère selon les modèles employés
(généralement on utilise une table de correrlation empirique).

On utilisera la formule empirique de Tsuboi (Université de Tokyo) :

ML = log10 A + 1.73 log10 ∆ − 0.83

où A est l’amplitude en micromètres et ∆ est la distance en kilomètres.

Les différentes valeurs obtenues permettent de quantifier les dégats provoqués par les séismes :
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Magnitude Description MMI Typique Effets Moyens du Séisme
1.0 - 1.9 Micro I Micro-séismes, non ressentis.

Enregistrés par les sismo-
graphes.

2.0 - 2.9 Mineur I Légèrement ressenti par cer-
taines personnes. Aucun dom-
mage aux bâtiments.

3.0 - 3.9 Léger II à III Souvent ressenti, mais cause
rarement des dégâts. Se-
cousses perceptibles dobjets à
lintérieur.

4.0 - 4.9 Faible IV à V Secousses intérieures notables
et bruits de cliquetis. Légère-
ment ressenti à lextérieur. Dé-
gâts minimes possibles.

5.0 - 5.9 Modéré VI à VII Peut endommager les bâti-
ments mal construits ; ressenti
par tous. Peu ou pas de dégâts
aux bâtiments solides.

6.0 - 6.9 Fort VII à IX Dégâts modérés aux struc-
tures solides ; dégâts sévères
aux structures faibles. Res-
senti sur de grandes régions.

7.0 - 7.9 Majeur VIII ou plus Dégâts majeurs et effondre-
ments possibles. Dommages
concentrés dans un rayon de
250 km.

8.0 - 8.9 Très fort VIII+ Destructions majeures à
totales. Dommages sur des
zones très vastes. Ressenti
à très grande distance de
lépicentre.

9.0 - 9.9 Extrême XII Destruction quasi-totale, dé-
gâts graves ou effondrement
de tous les bâtiments. Modi-
fication du relief.

3 Résultats

3.1 Tests

Je n’ai pas eu le temps d’implémenter la partie qui mesure automatiquement les temps ni la magnitude.
Cependant, j’ai fait des mesures manuelles que j’ai donné à l’algorithme de multilatération.

On constate que les positions prédites sont en accord avec celles données par l’USGS (United States Geolo-
gical Survey)
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Figure 11 – rs2025flrsdg - Mon estimation (avec les données RaspberryShake)
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Figure 12 – rs2025fwmrzv - Mon estimation (avec les données RaspberryShake)
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Figure 13 – rs2025fwmrzv - Estimation de l’USGS
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