////////////////////////////////////////////////////////////////////// // LibFile: comparisons.scad // Functions for comparisons with lists, ordering and sorting // Includes: // include // FileGroup: Data Management // FileSummary: Comparisons and sorting. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // Section: List comparison operations // Function: approx() // Usage: // test = approx(a, b, [eps]) // Description: // Compares two numbers, vectors, or matrices. Returns true if they are closer than `eps` to each other. // Results are undefined if `a` and `b` are of different types, or if vectors or matrices contain non-numbers. // Arguments: // a = First value. // b = Second value. // eps = The maximum allowed difference between `a` and `b` that will return true. // Example: // test1 = approx(-0.3333333333,-1/3); // Returns: true // test2 = approx(0.3333333333,1/3); // Returns: true // test3 = approx(0.3333,1/3); // Returns: false // test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true // test5 = approx(PI,3.1415926536); // Returns: true // test6 = approx([0,0,sin(45)],[0,0,sqrt(2)/2]); // Returns: true function approx(a,b,eps=EPSILON) = a == b? is_bool(a) == is_bool(b) : is_num(a) && is_num(b)? abs(a-b) <= eps : is_list(a) && is_list(b) && len(a) == len(b)? ( [] == [ for (i=idx(a)) let(aa=a[i], bb=b[i]) if( is_num(aa) && is_num(bb)? abs(aa-bb) > eps : !approx(aa,bb,eps=eps) ) 1 ] ) : false; // Function: all_zero() // Usage: // x = all_zero(x, [eps]); // Description: // Returns true if its argument is approximately zero, to within `eps`. // If passed a list returns true if all its entries are approximately equal to zero. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: // a = all_zero(0); // Returns: true. // b = all_zero(1e-3); // Returns: false. // c = all_zero([0,0,0]); // Returns: true. // d = all_zero([0,0,1e-3]); // Returns: false. function all_zero(x, eps=EPSILON) = is_finite(x)? abs(x)eps) 1] == []; // Function: all_nonzero() // Usage: // test = all_nonzero(x, [eps]); // Description: // Returns true if its argument is finite and different from zero by `eps`. // If passed a list returns true if all the entries of the list are finite numbers that are different from zero by `eps`. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: // a = all_nonzero(0); // Returns: false. // b = all_nonzero(1e-3); // Returns: true. // c = all_nonzero([0,0,0]); // Returns: false. // d = all_nonzero([0,0,1e-3]); // Returns: false. // e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true. function all_nonzero(x, eps=EPSILON) = is_finite(x)? abs(x)>eps : is_vector(x) && [for (xx=x) if(abs(xx)eps : is_vector(x) && [for (xx=x) if(xx<=0) 1] == []; // Function: all_negative() // Usage: // test = all_negative(x, [eps]); // Description: // Returns true if the argument is finite and less than zero, within epsilon tolerance if desired. // If passed a list, returns true if all the elements are finite negative numbers. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = tolerance. Default: 0 // Example: // a = all_negative(-2); // Returns: true. // b = all_negative(0); // Returns: false. // c = all_negative(2); // Returns: false. // d = all_negative([0,0,0]); // Returns: false. // e = all_negative([0,1,2]); // Returns: false. // f = all_negative([3,1,2]); // Returns: false. // g = all_negative([3,-1,2]); // Returns: false. // h = all_negative([-3,-1,-2]); // Returns: true. function all_negative(x, eps=0) = is_finite(x)? x<-eps : is_vector(x) && [for (xx=x) if(xx>=-eps) 1] == []; // Function: all_nonpositive() // Usage: // all_nonpositive(x, [eps]); // Description: // Returns true if its argument is finite and less than or equal to zero. // If passed a list, returns true if all the elements are finite non-positive numbers. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = tolerance. Default: 0 // Example: // a = all_nonpositive(-2); // Returns: true. // b = all_nonpositive(0); // Returns: true. // c = all_nonpositive(2); // Returns: false. // d = all_nonpositive([0,0,0]); // Returns: true. // e = all_nonpositive([0,1,2]); // Returns: false. // f = all_nonpositive([3,1,2]); // Returns: false. // g = all_nonpositive([3,-1,2]); // Returns: false. // h = all_nonpositive([-3,-1,-2]); // Returns: true. function all_nonpositive(x,eps=0) = is_num(x)? x<=eps : is_vector(x) && [for (xx=x) if(xx>eps) 1] == []; // Function: all_nonnegative() // Usage: // all_nonnegative(x, [eps]); // Description: // Returns true if the finite number passed to it is greater than or equal to zero. // If passed a list, returns true if all the elements are finite non-negative numbers. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = tolerance. Default: 0 // Example: // a = all_nonnegative(-2); // Returns: false. // b = all_nonnegative(0); // Returns: true. // c = all_nonnegative(2); // Returns: true. // d = all_nonnegative([0,0,0]); // Returns: true. // e = all_nonnegative([0,1,2]); // Returns: true. // f = all_nonnegative([0,-1,-2]); // Returns: false. // g = all_nonnegative([3,1,2]); // Returns: true. // h = all_nonnegative([3,-1,2]); // Returns: false. // i = all_nonnegative([-3,-1,-2]); // Returns: false. function all_nonnegative(x,eps=0) = is_num(x)? x>=-eps : is_vector(x) && [for (xx=x) if(xx<-eps) 1] == []; // Function: all_equal() // Usage: // b = all_equal(vec, [eps]); // Description: // Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set. // Arguments: // vec = vector to check // eps = Set to tolerance for approximate equality. Default: 0 function all_equal(vec,eps=0) = eps==0 ? [for(v=vec) if (v!=vec[0]) v] == [] : [for(v=vec) if (!approx(v,vec[0],eps)) v] == []; // Function: is_increasing() // Usage: // bool = is_increasing(list, [strict]); // Topics: List Handling // See Also: max_index(), min_index(), is_decreasing() // Description: // Returns true if the list is (non-strictly) increasing, or strictly increasing if strict is set to true. // The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be // evaluated character by character. // Arguments: // list = list (or string) to check // strict = set to true to test that list is strictly increasing. Default: false // Example: // a = is_increasing([1,2,3,4]); // Returns: true // b = is_increasing([1,3,2,4]); // Returns: false // c = is_increasing([1,3,3,4]); // Returns: true // d = is_increasing([1,3,3,4],strict=true); // Returns: false // e = is_increasing([4,3,2,1]); // Returns: false function is_increasing(list,strict=false) = assert(is_list(list)||is_string(list)) strict ? len([for (p=pair(list)) if(p.x>=p.y) true])==0 : len([for (p=pair(list)) if(p.x>p.y) true])==0; // Function: is_decreasing() // Usage: // bool = is_decreasing(list, [strict]); // Topics: List Handling // See Also: max_index(), min_index(), is_increasing() // Description: // Returns true if the list is (non-strictly) decreasing, or strictly decreasing if strict is set to true. // The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be // evaluated character by character. // Arguments: // list = list (or string) to check // strict = set to true to test that list is strictly decreasing. Default: false // Example: // a = is_decreasing([1,2,3,4]); // Returns: false // b = is_decreasing([4,2,3,1]); // Returns: false // c = is_decreasing([4,3,2,1]); // Returns: true function is_decreasing(list,strict=false) = assert(is_list(list)||is_string(list)) strict ? len([for (p=pair(list)) if(p.x<=p.y) true])==0 : len([for (p=pair(list)) if(p.xb. Returns 0 if a==b. // If types are not the same, then undef < bool < nan < num < str < list < range. // Arguments: // a = First value to compare. // b = Second value to compare. function compare_vals(a, b) = (a==b)? 0 : let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) : is_list(a)? compare_lists(a,b) : is_nan(a)? 0 : (ab)? 1 : 0; // Function: compare_lists() // Usage: // test = compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns a negative number if `a`<`b`. // Returns 0 if `a`==`b`. // Returns a positive number if `a`>`b`. // Arguments: // a = First list to compare. // b = Second list to compare. function compare_lists(a, b) = a==b? 0 : let( cmps = [ for (i = [0:1:min(len(a),len(b))-1]) let( cmp = compare_vals(a[i],b[i]) ) if (cmp!=0) cmp ] ) cmps==[]? (len(a)-len(b)) : cmps[0]; // Section: Finding the index of the minimum or maximum of a list // Function: min_index() // Usage: // idx = min_index(vals); // idxlist = min_index(vals, all=true); // Topics: List Handling // See Also: max_index(), is_increasing(), is_decreasing() // Description: // Returns the index of the first occurrence of the minimum value in the given list. // If `all` is true then returns a list of all indices where the minimum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the minimum. Default: false // Example: // a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8 // b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7] function min_index(vals, all=false) = assert( is_vector(vals), "Invalid or list of numbers.") all ? search(min(vals),vals,0) : search(min(vals), vals)[0]; // Function: max_index() // Usage: // idx = max_index(vals); // idxlist = max_index(vals, all=true); // Topics: List Handling // See Also: min_index(), is_increasing(), is_decreasing() // Description: // Returns the index of the first occurrence of the maximum value in the given list. // If `all` is true then returns a list of all indices where the maximum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the maximum. Default: false // Example: // max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2 // max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7] function max_index(vals, all=false) = assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.") all ? search(max(vals),vals,0) : search(max(vals), vals)[0]; // Section: Dealing with duplicate list entries // Function: find_approx() // Topics: List Handling // See Also: in_list() // Usage: // idx = find_approx(val, list, [start=], [eps=]); // indices = find_approx(val, list, all=true, [start=], [eps=]); // Description: // Finds the first item in `list` that matches `val` to within `eps` tolerance, returning the index. Returns `undef` if there is no match. // If `all=true` then returns all the items that agree within `eps` and returns the empty list if no such items exist. // Arguments: // val = The value to search for. // list = The list to search. // --- // start = The index to start searching from. Default: 0 // all = If true, returns a list of all matching item indices. Default: false // eps = The maximum allowed floating point rounding error for numeric comparisons. Default: EPSILON (1e-9) // Example: // find_approx(3,[4,5,3.01,2,2.99], eps=0.1); // Returns 2 // find_approx(9,[4,5,3.01,2,2.99], eps=0.1); // Returns undef // find_approx(3,[4,5,3.01,2,2.99], all=true, eps=0.1); // Returns [2,4] // find_approx(9,[4,5,3.01,2,2.99], all=true, eps=0.1); // Returns [] function find_approx(val, list, start=0, all=false, eps=EPSILON) = all ? [for (i=[start:1:len(list)-1]) if (approx(val, list[i], eps=eps)) i] : __find_approx(val, list, eps=eps, i=start); function __find_approx(val, list, eps, i=0) = i >= len(list)? undef : approx(val, list[i], eps=eps) ? i : __find_approx(val, list, eps=eps, i=i+1); // Function: deduplicate() // Usage: // list = deduplicate(list, [closed], [eps]); // Topics: List Handling // See Also: deduplicate_indexed() // Description: // Removes consecutive duplicate items in a list. // When `eps` is zero, the comparison between consecutive items is exact. // Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`. // Unlike `unique()` only consecutive duplicates are removed and the list is *not* sorted. // If `closed` is set to true then the first and last entries in `list` are treated as adjacent, // so all trailing items that match `list[0]` are dropped. // Arguments: // list = The list to deduplicate. // closed = If true, treats first and last list entry as adjacent. Default: false // eps = The maximum tolerance between items. Default: EPSILON // Example: // a = deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8] // b = deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3] // c = deduplicate("Hello"); // Returns: "Helo" // d = deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]] // e = deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]] function deduplicate(list, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list)) let( l = len(list), end = l-(closed?0:1) ) is_string(list) ? str_join([for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]]) : eps==0 ? [for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]] : [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]]; // Function: deduplicate_indexed() // Usage: // new_idxs = deduplicate_indexed(list, indices, [closed], [eps]); // Topics: List Handling // See Also: deduplicate() // Description: // Given a list, and a list of indices, removes consecutive indices corresponding to list values that are equal // or approximately equal. // Arguments: // list = The list that the indices index into. // indices = The list of indices to deduplicate. // closed = If true, drops trailing indices if their list value matches the list value corresponding to the first index. // eps = The maximum difference to allow between numbers or vectors. // Example: // a = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1] // b = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0] // c = deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4] function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list), "Improper list or string.") indices==[]? [] : assert(is_vector(indices), "Indices must be a list of numbers.") let( ll = len(list), l = len(indices), end = l-(closed?0:1) ) [ for (i = [0:1:l-1]) let( idx1 = indices[i], idx2 = indices[(i+1)%l], a = assert(idx1>=0,"Bad index.") assert(idx1=0,"Bad index.") assert(idx2pivot) li ] ) concat( _unique_sort(lesser), equal[0], _unique_sort(greater) ); // Function: unique_count() // Usage: // sorted_counts = unique_count(list); // Topics: List Handling // See Also: shuffle(), sort(), sortidx(), unique() // Description: // Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `list` and `counts` is a list such // that `count[i]` gives the number of times that `sorted[i]` appears in `list`. // Arguments: // list = The list to analyze. // Example: // sorted = unique([5,2,8,3,1,3,8,3,5]); // Returns: [ [1,2,3,5,8], [1,1,3,2,2] ] function unique_count(list) = assert(is_list(list) || is_string(list), "Invalid input." ) list == [] ? [[],[]] : is_homogeneous(list,1) && ! is_list(list[0]) ? let( sorted = _group_sort(list) ) [ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ] : let( list = sort(list), ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i] ) [ select(list,ind), deltas( concat(ind,[len(list)]) ) ]; // Section: Sorting // returns true for valid index specifications idx in the interval [imin, imax) // note that idx can't have any value greater or EQUAL to imax // this allows imax=INF as a bound to numerical lists function _valid_idx(idx,imin,imax) = is_undef(idx) || ( is_finite(idx) && ( is_undef(imin) || idx>=imin ) && ( is_undef(imax) || idx< imax ) ) || ( is_list(idx) && ( is_undef(imin) || min(idx)>=imin ) && ( is_undef(imax) || max(idx)< imax ) ) || ( is_range(idx) && ( is_undef(imin) || (idx[1]>0 && idx[0]>=imin ) || (idx[1]<0 && idx[0]<=imax ) ) && ( is_undef(imax) || (idx[1]>0 && idx[2]<=imax ) || (idx[1]<0 && idx[2]>=imin ) ) ); // idx should be an index of the arrays l[i] function _group_sort_by_index(l,idx) = len(l) == 0 ? [] : len(l) == 1 ? [l] : let( pivot = l[floor(len(l)/2)][idx], equal = [ for(li=l) if( li[idx]==pivot) li ], lesser = [ for(li=l) if( li[idx]< pivot) li ], greater = [ for(li=l) if( li[idx]> pivot) li ] ) concat( _group_sort_by_index(lesser,idx), [equal], _group_sort_by_index(greater,idx) ); function _group_sort(l) = len(l) == 0 ? [] : len(l) == 1 ? [l] : let( pivot = l[floor(len(l)/2)], equal = [ for(li=l) if( li==pivot) li ], lesser = [ for(li=l) if( li< pivot) li ], greater = [ for(li=l) if( li> pivot) li ] ) concat( _group_sort(lesser), [equal], _group_sort(greater) ); // Sort a vector of scalar values with the native comparison operator // all elements should have the same type. function _sort_scalars(arr) = len(arr)<=1 ? arr : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if (y < pivot) y ], equal = [ for (y = arr) if (y == pivot) y ], greater = [ for (y = arr) if (y > pivot) y ] ) concat( _sort_scalars(lesser), equal, _sort_scalars(greater) ); // lexical sort of a homogeneous list of vectors // uses native comparison operator function _sort_vectors(arr, _i=0) = len(arr)<=1 || _i>=len(arr[0]) ? arr : let( pivot = arr[floor(len(arr)/2)][_i], lesser = [ for (entry=arr) if (entry[_i] < pivot ) entry ], equal = [ for (entry=arr) if (entry[_i] == pivot ) entry ], greater = [ for (entry=arr) if (entry[_i] > pivot ) entry ] ) concat( _sort_vectors(lesser, _i ), _sort_vectors(equal, _i+1 ), _sort_vectors(greater, _i ) ); // lexical sort of a homogeneous list of vectors by the vector components with indices in idxlist // all idxlist indices should be in the range of the vector dimensions // idxlist must be undef or a simple list of numbers // uses native comparison operator function _sort_vectors(arr, idxlist, _i=0) = len(arr)<=1 || ( is_list(idxlist) && _i>=len(idxlist) ) || _i>=len(arr[0]) ? arr : let( k = is_list(idxlist) ? idxlist[_i] : _i, pivot = arr[floor(len(arr)/2)][k], lesser = [ for (entry=arr) if (entry[k] < pivot ) entry ], equal = [ for (entry=arr) if (entry[k] == pivot ) entry ], greater = [ for (entry=arr) if (entry[k] > pivot ) entry ] ) concat( _sort_vectors(lesser, idxlist, _i ), _sort_vectors(equal, idxlist, _i+1), _sort_vectors(greater, idxlist, _i ) ); // sorting using compare_vals(); returns indexed list when `indexed==true` function _sort_general(arr, idx=undef, indexed=false) = (len(arr)<=1) ? arr : ! indexed && is_undef(idx) ? _lexical_sort(arr) : let( labeled = is_undef(idx) ? [for(i=idx(arr)) [i,arr[i]]] : [for(i=idx(arr)) [i, for(j=idx) arr[i][j]]], arrind = _indexed_sort(labeled)) indexed ? arrind : [for(i=arrind) arr[i]]; // lexical sort using compare_vals() function _lexical_sort(arr) = len(arr)<=1? arr : let( pivot = arr[floor(len(arr)/2)] ) let( lesser = [ for (entry=arr) if (compare_vals(entry, pivot) <0 ) entry ], equal = [ for (entry=arr) if (compare_vals(entry, pivot)==0 ) entry ], greater = [ for (entry=arr) if (compare_vals(entry, pivot) >0 ) entry ] ) concat(_lexical_sort(lesser), equal, _lexical_sort(greater)); // given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair // the sorting is done using compare_vals() function _indexed_sort(arrind) = arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] : let( pivot = arrind[floor(len(arrind)/2)][1] ) let( lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ], equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ], greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ] ) concat(_indexed_sort(lesser), equal, _indexed_sort(greater)); // Function: sort() // Usage: // slist = sort(list, [idx]); // Topics: List Handling // See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort() // Description: // Sorts the given list in lexicographic order. The sort is stable, meaning equivalent items will not change order. // If the input is a homogeneous simple list or a homogeneous // list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster. // When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to // `undef < boolean < number < string < list`. Comparison of lists is recursive. // When comparing vectors, homogeneous or not, the parameter `idx` may be used to select the components to compare. // Note that homogeneous lists of vectors may contain mixed types provided that for any two list elements // list[i] and list[j] satisfies type(list[i][k])==type(list[j][k]) for all k. // Strings are allowed as any list element and are compared with the native operators although no substring // comparison is possible. // Arguments: // list = The list to sort. // idx = If given, do the comparison based just on the specified index, range or list of indices. // Example: // // Homogeneous lists // l1 = [45,2,16,37,8,3,9,23,89,12,34]; // sorted1 = sort(l1); // Returns [2,3,8,9,12,16,23,34,37,45,89] // l2 = [["oat",0], ["cat",1], ["bat",3], ["bat",2], ["fat",3]]; // sorted2 = sort(l2); // Returns: [["bat",2],["bat",3],["cat",1],["fat",3],["oat",0]] // // Non-homegenous list // l3 = [[4,0],[7],[3,9],20,[4],[3,1],[8]]; // sorted3 = sort(l3); // Returns: [20,[3,1],[3,9],[4],[4,0],[7],[8]] function sort(list, idx=undef) = assert(is_list(list)||is_string(list), "Invalid input." ) is_string(list)? str_join(sort([for (x = list) x],idx)) : !is_list(list) || len(list)<=1 ? list : is_homogeneous(list,1) ? let(size = list_shape(list[0])) size==0 ? _sort_scalars(list) : len(size)!=1 ? _sort_general(list,idx) : is_undef(idx) ? _sort_vectors(list) : assert( _valid_idx(idx) , "Invalid indices.") _sort_vectors(list,[for(i=idx) i]) : _sort_general(list,idx); // Function: sortidx() // Usage: // idxlist = sortidx(list, [idx]); // Topics: List Handling // See Also: shuffle(), sort(), group_sort(), unique(), unique_count() // Description: // Given a list, sort it as function `sort()`, and returns // a list of indexes into the original list in that sorted order. // The sort is stable, so equivalent items will not change order. // If you iterate the returned list in order, and use the list items // to index into the original list, you will be iterating the original // values in sorted order. // Arguments: // list = The list to sort. // idx = If given, do the comparison based just on the specified index, range or list of indices. // Example: // lst = ["d","b","e","c"]; // idxs = sortidx(lst); // Returns: [1,3,0,2] // ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"] // Example: // lst = [ // ["foo", 88, [0,0,1], false], // ["bar", 90, [0,1,0], true], // ["baz", 89, [1,0,0], false], // ["qux", 23, [1,1,1], true] // ]; // idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1] // idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3] // idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1] function sortidx(list, idx=undef) = assert(is_list(list)||is_string(list), "Invalid list." ) is_homogeneous(list,1) ? let( size = list_shape(list[0]), aug = ! (size==0 || len(size)==1) ? 0 // for general sorting : [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting lidx = size==0? [1] : // scalar sorting len(size)==1 ? is_undef(idx) ? [for(i=[0:len(list[0])-1]) i+1] // vector sorting : [for(i=idx) i+1] // vector sorting : 0 // just to signal ) assert( ! ( size==0 && is_def(idx) ), "The specification of `idx` is incompatible with scalar sorting." ) assert( _valid_idx(idx) , "Invalid indices." ) lidx!=0 ? let( lsort = _sort_vectors(aug,lidx) ) [for(li=lsort) li[0] ] : _sort_general(list,idx,indexed=true) : _sort_general(list,idx,indexed=true); // Function: group_sort() // Usage: // ulist = group_sort(list,[idx]); // Topics: List Handling // See Also: shuffle(), sort(), sortidx(), unique(), unique_count() // Description: // Given a list of numbers, sorts the list into a sequence of lists, where each list contains any repeated values. // If there are no repeated values the output will be a list of singleton lists. // If you apply {{flatten()}} to the output, the result will be a simple sorted list. // . // When the input is a list of lists, the sorting is done based on index `idx` of the entries in `list`. // In this case, `list[i][idx]` must be a number for every `i`, and the entries in `list` are grouped // together in the output if they match at index `idx`. This function can be used to group together // items that are tagged with the same index. // Arguments: // list = The list to sort. // idx = If input is a list of lists, index to sort on. Default: 0. // Example: // sorted = group_sort([5,2,8,3,1,3,8,7,5]); // Returns: [[1],[2],[3,3],[5,5],[7],[8,8]] // // Next example returns: [ [[2,"b"],[2,"e"]], [[3,"d"]], [[5,"a"],[5,"c"]] ] // sorted2 = group_sort([[5,"a"],[2,"b"], [5,"c"], [3,"d"], [2,"e"] ], idx=0); function group_sort(list, idx) = assert(is_list(list), "Input should be a list." ) assert(is_undef(idx) || (is_int(idx) && idx>=0) , "Invalid index." ) len(list)<=1 ? [list] : is_vector(list)? assert(is_undef(idx),"Cannot give idx with a vector input") _group_sort(list) : let( idx = default(idx,0) ) assert( [for(entry=list) if(!is_list(entry) || len(entry)=0, "k must be nonnegative") let( v = list[rand_int(0,len(list)-1,1)[0]], smaller = [for(li=list) if(li= k ? [ each smaller, for(i=[1:k-len(smaller)]) v ] : len(smaller) > k ? list_smallest(smaller, k) : let( bigger = [for(li=list) if(li>v) li ] ) concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal))); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap