1/*
  2 * A speed-improved perlin and simplex noise algorithms for 2D.
  3 *
  4 * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
  5 * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
  6 * Better rank ordering method by Stefan Gustavson in 2012.
  7 * Converted to Javascript by Joseph Gentle.
  8 *
  9 * Version 2012-03-09
 10 *
 11 * This code was placed in the public domain by its original author,
 12 * Stefan Gustavson. You may use it as you see fit, but
 13 * attribution is appreciated.
 14 *
 15 */
 16
 17(function(global){
 18  var module = global.noise = {};
 19
 20  function Grad(x, y, z) {
 21    this.x = x; this.y = y; this.z = z;
 22  }
 23  
 24  Grad.prototype.dot2 = function(x, y) {
 25    return this.x*x + this.y*y;
 26  };
 27
 28  Grad.prototype.dot3 = function(x, y, z) {
 29    return this.x*x + this.y*y + this.z*z;
 30  };
 31
 32  var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
 33               new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
 34               new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];
 35
 36  var p = [151,160,137,91,90,15,
 37  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
 38  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
 39  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
 40  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
 41  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
 42  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
 43  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
 44  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
 45  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
 46  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
 47  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
 48  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
 49  // To remove the need for index wrapping, double the permutation table length
 50  var perm = new Array(512);
 51  var gradP = new Array(512);
 52
 53  // This isn't a very good seeding function, but it works ok. It supports 2^16
 54  // different seed values. Write something better if you need more seeds.
 55  module.seed = function(seed) {
 56    if(seed > 0 && seed < 1) {
 57      // Scale the seed out
 58      seed *= 65536;
 59    }
 60
 61    seed = Math.floor(seed);
 62    if(seed < 256) {
 63      seed |= seed << 8;
 64    }
 65
 66    for(var i = 0; i < 256; i++) {
 67      var v;
 68      if (i & 1) {
 69        v = p[i] ^ (seed & 255);
 70      } else {
 71        v = p[i] ^ ((seed>>8) & 255);
 72      }
 73
 74      perm[i] = perm[i + 256] = v;
 75      gradP[i] = gradP[i + 256] = grad3[v % 12];
 76    }
 77  };
 78
 79  module.seed(0);
 80
 81  /*
 82  for(var i=0; i<256; i++) {
 83    perm[i] = perm[i + 256] = p[i];
 84    gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
 85  }*/
 86
 87  // Skewing and unskewing factors for 2, 3, and 4 dimensions
 88  var F2 = 0.5*(Math.sqrt(3)-1);
 89  var G2 = (3-Math.sqrt(3))/6;
 90
 91  var F3 = 1/3;
 92  var G3 = 1/6;
 93
 94  // 2D simplex noise
 95  module.simplex2 = function(xin, yin) {
 96    var n0, n1, n2; // Noise contributions from the three corners
 97    // Skew the input space to determine which simplex cell we're in
 98    var s = (xin+yin)*F2; // Hairy factor for 2D
 99    var i = Math.floor(xin+s);
100    var j = Math.floor(yin+s);
101    var t = (i+j)*G2;
102    var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
103    var y0 = yin-j+t;
104    // For the 2D case, the simplex shape is an equilateral triangle.
105    // Determine which simplex we are in.
106    var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
107    if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
108      i1=1; j1=0;
109    } else {    // upper triangle, YX order: (0,0)->(0,1)->(1,1)
110      i1=0; j1=1;
111    }
112    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
113    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
114    // c = (3-sqrt(3))/6
115    var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
116    var y1 = y0 - j1 + G2;
117    var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
118    var y2 = y0 - 1 + 2 * G2;
119    // Work out the hashed gradient indices of the three simplex corners
120    i &= 255;
121    j &= 255;
122    var gi0 = gradP[i+perm[j]];
123    var gi1 = gradP[i+i1+perm[j+j1]];
124    var gi2 = gradP[i+1+perm[j+1]];
125    // Calculate the contribution from the three corners
126    var t0 = 0.5 - x0*x0-y0*y0;
127    if(t0<0) {
128      n0 = 0;
129    } else {
130      t0 *= t0;
131      n0 = t0 * t0 * gi0.dot2(x0, y0);  // (x,y) of grad3 used for 2D gradient
132    }
133    var t1 = 0.5 - x1*x1-y1*y1;
134    if(t1<0) {
135      n1 = 0;
136    } else {
137      t1 *= t1;
138      n1 = t1 * t1 * gi1.dot2(x1, y1);
139    }
140    var t2 = 0.5 - x2*x2-y2*y2;
141    if(t2<0) {
142      n2 = 0;
143    } else {
144      t2 *= t2;
145      n2 = t2 * t2 * gi2.dot2(x2, y2);
146    }
147    // Add contributions from each corner to get the final noise value.
148    // The result is scaled to return values in the interval [-1,1].
149    return 70 * (n0 + n1 + n2);
150  };
151
152  // 3D simplex noise
153  module.simplex3 = function(xin, yin, zin) {
154    var n0, n1, n2, n3; // Noise contributions from the four corners
155
156    // Skew the input space to determine which simplex cell we're in
157    var s = (xin+yin+zin)*F3; // Hairy factor for 2D
158    var i = Math.floor(xin+s);
159    var j = Math.floor(yin+s);
160    var k = Math.floor(zin+s);
161
162    var t = (i+j+k)*G3;
163    var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
164    var y0 = yin-j+t;
165    var z0 = zin-k+t;
166
167    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
168    // Determine which simplex we are in.
169    var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
170    var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
171    if(x0 >= y0) {
172      if(y0 >= z0)      { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
173      else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
174      else              { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
175    } else {
176      if(y0 < z0)      { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
177      else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
178      else             { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
179    }
180    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
181    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
182    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
183    // c = 1/6.
184    var x1 = x0 - i1 + G3; // Offsets for second corner
185    var y1 = y0 - j1 + G3;
186    var z1 = z0 - k1 + G3;
187
188    var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
189    var y2 = y0 - j2 + 2 * G3;
190    var z2 = z0 - k2 + 2 * G3;
191
192    var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
193    var y3 = y0 - 1 + 3 * G3;
194    var z3 = z0 - 1 + 3 * G3;
195
196    // Work out the hashed gradient indices of the four simplex corners
197    i &= 255;
198    j &= 255;
199    k &= 255;
200    var gi0 = gradP[i+   perm[j+   perm[k   ]]];
201    var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
202    var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
203    var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];
204
205    // Calculate the contribution from the four corners
206    var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
207    if(t0<0) {
208      n0 = 0;
209    } else {
210      t0 *= t0;
211      n0 = t0 * t0 * gi0.dot3(x0, y0, z0);  // (x,y) of grad3 used for 2D gradient
212    }
213    var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
214    if(t1<0) {
215      n1 = 0;
216    } else {
217      t1 *= t1;
218      n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
219    }
220    var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
221    if(t2<0) {
222      n2 = 0;
223    } else {
224      t2 *= t2;
225      n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
226    }
227    var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
228    if(t3<0) {
229      n3 = 0;
230    } else {
231      t3 *= t3;
232      n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
233    }
234    // Add contributions from each corner to get the final noise value.
235    // The result is scaled to return values in the interval [-1,1].
236    return 32 * (n0 + n1 + n2 + n3);
237
238  };
239
240  // ##### Perlin noise stuff
241
242  function fade(t) {
243    return t*t*t*(t*(t*6-15)+10);
244  }
245
246  function lerp(a, b, t) {
247    return (1-t)*a + t*b;
248  }
249
250  // 2D Perlin Noise
251  module.perlin2 = function(x, y) {
252    // Find unit grid cell containing point
253    var X = Math.floor(x), Y = Math.floor(y);
254    // Get relative xy coordinates of point within that cell
255    x = x - X; y = y - Y;
256    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
257    X = X & 255; Y = Y & 255;
258
259    // Calculate noise contributions from each of the four corners
260    var n00 = gradP[X+perm[Y]].dot2(x, y);
261    var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
262    var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
263    var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);
264
265    // Compute the fade curve value for x
266    var u = fade(x);
267
268    // Interpolate the four results
269    return lerp(
270        lerp(n00, n10, u),
271        lerp(n01, n11, u),
272       fade(y));
273  };
274
275  // 3D Perlin Noise
276  module.perlin3 = function(x, y, z) {
277    // Find unit grid cell containing point
278    var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
279    // Get relative xyz coordinates of point within that cell
280    x = x - X; y = y - Y; z = z - Z;
281    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
282    X = X & 255; Y = Y & 255; Z = Z & 255;
283
284    // Calculate noise contributions from each of the eight corners
285    var n000 = gradP[X+  perm[Y+  perm[Z  ]]].dot3(x,   y,     z);
286    var n001 = gradP[X+  perm[Y+  perm[Z+1]]].dot3(x,   y,   z-1);
287    var n010 = gradP[X+  perm[Y+1+perm[Z  ]]].dot3(x,   y-1,   z);
288    var n011 = gradP[X+  perm[Y+1+perm[Z+1]]].dot3(x,   y-1, z-1);
289    var n100 = gradP[X+1+perm[Y+  perm[Z  ]]].dot3(x-1,   y,   z);
290    var n101 = gradP[X+1+perm[Y+  perm[Z+1]]].dot3(x-1,   y, z-1);
291    var n110 = gradP[X+1+perm[Y+1+perm[Z  ]]].dot3(x-1, y-1,   z);
292    var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);
293
294    // Compute the fade curve value for x, y, z
295    var u = fade(x);
296    var v = fade(y);
297    var w = fade(z);
298
299    // Interpolate
300    return lerp(
301        lerp(
302          lerp(n000, n100, u),
303          lerp(n001, n101, u), w),
304        lerp(
305          lerp(n010, n110, u),
306          lerp(n011, n111, u), w),
307       v);
308  };
309
310})(this);