1\documentclass[a4paper,11pt,landscape]{article}
  2\usepackage[a4paper,margin=1.4cm,landscape]{geometry}
  3\usepackage[T1]{fontenc}
  4\usepackage[utf8]{inputenc}
  5\usepackage[english]{babel} % change to french
  6\usepackage{lmodern}
  7\usepackage{amsmath}
  8\usepackage{amsfonts}
  9\usepackage{amssymb}
 10\usepackage{amsthm}
 11\usepackage{graphicx}
 12\usepackage{color}
 13\usepackage{xcolor}
 14\usepackage{url}
 15\usepackage{theorem}
 16\usepackage{textcomp}
 17\usepackage{listings}
 18\usepackage{hyperref}
 19\usepackage{parskip}
 20\usepackage{float}
 21\usepackage{makecell}
 22\usepackage{pgfplots}
 23\usepackage{adjustbox}
 24
 25%\title{DL Usuels}
 26%\author{Louis Dalibard}
 27%\date{\today}
 28
 29\begin{document}
 30\pagebreak
 31\hspace{0pt}
 32\vfill
 33\begin{table}
 34\centering\setcellgapes{1pt}\makegapedcells
 35\makebox[\linewidth]{
 36  \begin{tabular}{!{\qquad}l|l!{\qquad}} \Xhline{2\arrayrulewidth}
 37    \hline
 38    A l'ordre $n$                    & Premiers termes \\ \hline
 39    $\cos(x) = \sum\limits_{k=0}^{n}(-1)^k\frac{x^{2k}}{(2k)!}+o_{x \rightarrow 0}(x^{2n+1}) $                         &       \begin{tabular}{!{\qquad}ccccccccc!{\qquad}} $\cos(x)$ & $=$ & $1$ & $-$ & $\frac{x^2}{2}$ & $+$ & $\frac{x^4}{24}$ & $+$ & $o_{x \rightarrow 0}(x^5)$ \\ 
 40    & & \begin{tikzpicture}[scale=0.3, transform shape]
 41    \begin{axis}[domain=-2:2,legend pos=outer north east]
 42    \addplot[color=red] {cos(deg(x))}; 
 43    \addplot[color=blue] {1};
 44    \end{axis}
 45    \end{tikzpicture}
 46    & & \begin{tikzpicture}[scale=0.3, transform shape]
 47    \begin{axis}[domain=-2:2,legend pos=outer north east]
 48    \addplot[color=red] {cos(deg(x))}; 
 49    \addplot[color=blue] {1-x^2/2)};
 50    \end{axis}
 51    \end{tikzpicture}
 52    & & \begin{tikzpicture}[scale=0.3, transform shape]
 53    \begin{axis}[domain=-2:2,legend pos=outer north east]
 54    \addplot[color=red] {cos(deg(x))}; 
 55    \addplot[color=blue] {1-x^2/2+x^4/24};
 56    \end{axis}
 57    \end{tikzpicture}
 58    \end{tabular}         \\ \hline
 59    $\sin(x) = \sum\limits_{k=0}^{n}(-1)^k\frac{x^{2k+1}}{(2k+1)!}+o_{x \rightarrow 0}(x^{2n+2}) $                            &     \begin{tabular}{!{\qquad}ccccccccc!{\qquad}} $\sin(x)$ & $=$ & $x$ & $-$ & $\frac{x^3}{6}$ & $+$ & $\frac{x^5}{120}$ & $+$ & $o_{x \rightarrow 0}(x^6)$ \\ 
 60    & & \begin{tikzpicture}[scale=0.3, transform shape]
 61    \begin{axis}[domain=-2:2,legend pos=outer north east]
 62    \addplot[color=red] {sin(deg(x))}; 
 63    \addplot[color=blue] {x};
 64    \end{axis}
 65    \end{tikzpicture}
 66    & & \begin{tikzpicture}[scale=0.3, transform shape]
 67    \begin{axis}[domain=-2:2,legend pos=outer north east]
 68    \addplot[color=red] {sin(deg(x))}; 
 69    \addplot[color=blue] {x-x^3/6};
 70    \end{axis}
 71    \end{tikzpicture}
 72    & & \begin{tikzpicture}[scale=0.3, transform shape]
 73    \begin{axis}[domain=-2:2,legend pos=outer north east]
 74    \addplot[color=red] {sin(deg(x))}; 
 75    \addplot[color=blue] {x-x^3/6+x^5/120};
 76    \end{axis}
 77    \end{tikzpicture}
 78    \end{tabular}            \\ \hline
 79    $e^x = \sum\limits_{k=0}^{n} \frac{x^{k}}{k!}+o_{x \rightarrow 0}(x^{n})   $                              &         \begin{tabular}{!{\qquad}ccccccccccc!{\qquad}} $e^x$ & $=$ & $1$ & $+$ & $x$ & $+$ & $\frac{x^2}{2}$ & $+$ & $\frac{x^3}{6}$ & $+$ & $o_{x \rightarrow 0}(x^3)$ \\ 
 80    & & \begin{tikzpicture}[scale=0.3, transform shape]
 81    \begin{axis}[domain=-2:2,legend pos=outer north east]
 82    \addplot[color=red] {e^x}; 
 83    \addplot[color=blue] {1};
 84    \end{axis}
 85    \end{tikzpicture}
 86    & & \begin{tikzpicture}[scale=0.3, transform shape]
 87    \begin{axis}[domain=-2:2,legend pos=outer north east]
 88    \addplot[color=red] {e^x}; 
 89    \addplot[color=blue] {1+x)};
 90    \end{axis}
 91    \end{tikzpicture}
 92    & & \begin{tikzpicture}[scale=0.3, transform shape]
 93    \begin{axis}[domain=-2:2,legend pos=outer north east]
 94    \addplot[color=red] {e^x}; 
 95    \addplot[color=blue] {1+x+x^2/2};
 96    \end{axis}
 97    \end{tikzpicture}
 98    & & \begin{tikzpicture}[scale=0.3, transform shape]
 99    \begin{axis}[domain=-2:2,legend pos=outer north east]
100    \addplot[color=red] {e^x}; 
101    \addplot[color=blue] {1+x+x^2/2+x^3/6};
102    \end{axis}
103    \end{tikzpicture}
104    \end{tabular}\\ \hline
105    $ \ln(1+x) = \sum\limits_{k=0}^{n} (-1)^{k+1}\frac{x^{k}}{k}+o_{x \rightarrow 0}(x^{n})   $                         &        \begin{tabular}{!{\qquad}ccccccccc!{\qquad}} $\ln(1+x)$ & $=$ & $x$ & $-$ & $\frac{x^2}{2}$ & $+$ & $\frac{x^3}{3}$ & $+$ & $o_{x \rightarrow 0}(x^3)$ \\ 
106    & & \begin{tikzpicture}[scale=0.3, transform shape]
107    \begin{axis}[domain=0:2,legend pos=outer north east]
108    \addplot[color=red] {ln(x+1)}; 
109    \addplot[color=blue] {x};
110    \end{axis}
111    \end{tikzpicture}
112    & & \begin{tikzpicture}[scale=0.3, transform shape]
113    \begin{axis}[domain=0:2,legend pos=outer north east]
114    \addplot[color=red] {ln(x+1)}; 
115    \addplot[color=blue] {x-x^2/2};
116    \end{axis}
117    \end{tikzpicture}
118    & & \begin{tikzpicture}[scale=0.3, transform shape]
119    \begin{axis}[domain=-1:1,legend pos=outer north east]
120    \addplot[color=red] {ln(x+1)}; 
121    \addplot[color=blue] {x-x^2/2+x^3/3};
122    \end{axis}
123    \end{tikzpicture}
124    \end{tabular}         \\ \hline
125    $ \frac{1}{1+x} = \sum\limits_{k=0}^{n} (-1)^k x^{k}+o_{x \rightarrow 0}(x^{n})   $ &         \begin{tabular}{!{\qquad}ccccccccccc!{\qquad}} $\frac{1}{1+x}$ & $=$ & $1$ & $-$ & $x$ & $+$ & $x^2$ & $-$ & $x^3$ & $+$ & $o_{x \rightarrow 0}(x^3)$ \\ 
126    & & \begin{tikzpicture}[scale=0.3, transform shape]
127    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
128    \addplot[color=red] {1/(1+x)}; 
129    \addplot[color=blue] {1};
130    \end{axis}
131    \end{tikzpicture}
132    & & \begin{tikzpicture}[scale=0.3, transform shape]
133    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
134    \addplot[color=red] {1/(1+x)}; 
135    \addplot[color=blue] {1-x)};
136    \end{axis}
137    \end{tikzpicture}
138    & & \begin{tikzpicture}[scale=0.3, transform shape]
139    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
140    \addplot[color=red] {1/(1+x)}; 
141    \addplot[color=blue] {1-x+x^2};
142    \end{axis}
143    \end{tikzpicture}
144    & & \begin{tikzpicture}[scale=0.3, transform shape]
145    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
146    \addplot[color=red] {1/(1+x)}; 
147    \addplot[color=blue] {1-x+x^2-x^3};
148    \end{axis}
149    \end{tikzpicture}
150    \end{tabular}        \\ \hline
151    $ \frac{1}{1-x} = \sum\limits_{k=0}^{n} x^{k}+o_{x \rightarrow 0}(x^{n})   $ &       \begin{tabular}{!{\qquad}ccccccccccc!{\qquad}} $\frac{1}{1-x}$ & $=$ & $1$ & $+$ & $x$ & $+$ & $x^2$ & $+$ & $x^3$ & $+$ & $o_{x \rightarrow 0}(x^3)$ \\ 
152    & & \begin{tikzpicture}[scale=0.3, transform shape]
153    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
154    \addplot[color=red] {1/(1-x)}; 
155    \addplot[color=blue] {1};
156    \end{axis}
157    \end{tikzpicture}
158    & & \begin{tikzpicture}[scale=0.3, transform shape]
159    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
160    \addplot[color=red] {1/(1-x)}; 
161    \addplot[color=blue] {1+x)};
162    \end{axis}
163    \end{tikzpicture}
164    & & \begin{tikzpicture}[scale=0.3, transform shape]
165    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
166    \addplot[color=red] {1/(1-x)}; 
167    \addplot[color=blue] {1+x+x^2};
168    \end{axis}
169    \end{tikzpicture}
170    & & \begin{tikzpicture}[scale=0.3, transform shape]
171    \begin{axis}[domain=-0.5:0.5,legend pos=outer north east]
172    \addplot[color=red] {1/(1-x)}; 
173    \addplot[color=blue] {1+x+x^2+x^3};
174    \end{axis}
175    \end{tikzpicture}
176    \end{tabular}          \\ \hline
177    \Xhline{2\arrayrulewidth}
178  \end{tabular}
179  }
180\end{table}
181\vfill
182\hspace{0pt}
183\pagebreak
184
185\end{document}