1//////////////////////////////////////////////////////////////////////
  2// LibFile: vectors.scad
  3//   This file provides some mathematical operations that apply to each
  4//   entry in a vector.  It provides normalization and angle computation, and
  5//   it provides functions for searching lists of vectors for matches to
  6//   a given vector.  
  7// Includes:
  8//   include <BOSL2/std.scad>
  9// FileGroup: Math
 10// FileSummary: Vector arithmetic, angle, and searching.
 11// FileFootnotes: STD=Included in std.scad
 12//////////////////////////////////////////////////////////////////////
 13
 14
 15// Section: Vector Testing
 16
 17
 18// Function: is_vector()
 19// Usage:
 20//   bool = is_vector(v, [length], [zero=], [all_nonzero=], [eps=]);
 21// Description:
 22//   Returns true if v is a list of finite numbers.
 23// Arguments:
 24//   v = The value to test to see if it is a vector.
 25//   length = If given, make sure the vector is `length` items long.
 26//   ---
 27//   zero = If false, require that the `norm()` of the vector is not approximately zero.  If true, require the `norm()` of the vector to be approximately zero.  Default: `undef` (don't check vector `norm()`.)
 28//   all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero.  Default: `false`
 29//   eps = The minimum vector length that is considered non-zero.  Default: `EPSILON` (`1e-9`)
 30// Example:
 31//   is_vector(4);                          // Returns false
 32//   is_vector([4,true,false]);             // Returns false
 33//   is_vector([3,4,INF,5]);                // Returns false
 34//   is_vector([3,4,5,6]);                  // Returns true
 35//   is_vector([3,4,undef,5]);              // Returns false
 36//   is_vector([3,4,5],3);                  // Returns true
 37//   is_vector([3,4,5],4);                  // Returns true
 38//   is_vector([]);                         // Returns false
 39//   is_vector([0,4,0],3,zero=false);       // Returns true
 40//   is_vector([0,0,0],zero=false);         // Returns false
 41//   is_vector([0,0,1e-12],zero=false);     // Returns false
 42//   is_vector([0,1,0],all_nonzero=false);  // Returns false
 43//   is_vector([1,1,1],all_nonzero=false);  // Returns true
 44//   is_vector([],zero=false);              // Returns false
 45function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
 46    is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_finite(vi)) 0] 
 47    && (is_undef(length) || len(v)==length)
 48    && (is_undef(zero) || ((norm(v) >= eps) == !zero))
 49    && (!all_nonzero || all_nonzero(v)) ;
 50
 51
 52
 53// Section: Scalar operations on vectors
 54
 55// Function: add_scalar()
 56// Usage:  
 57//   v_new = add_scalar(v, s);
 58// Topics: List Handling
 59// Description:
 60//   Given a vector and a scalar, returns the vector with the scalar added to each item in it.
 61// Arguments:
 62//   v = The initial array.
 63//   s = A scalar value to add to every item in the array.
 64// Example:
 65//   a = add_scalar([1,2,3],3);            // Returns: [4,5,6]
 66function add_scalar(v,s) =
 67    assert(is_vector(v), "Input v must be a vector")
 68    assert(is_finite(s), "Input s must be a finite scalar")
 69    [for(entry=v) entry+s];
 70
 71
 72// Function: v_mul()
 73// Usage:
 74//   v3 = v_mul(v1, v2);
 75// Description:
 76//   Element-wise multiplication.  Multiplies each element of `v1` by the corresponding element of `v2`.
 77//   Both `v1` and `v2` must be the same length.  Returns a vector of the products.  Note that
 78//   the items in `v1` and `v2` can be anything that OpenSCAD will multiply.  
 79// Arguments:
 80//   v1 = The first vector.
 81//   v2 = The second vector.
 82// Example:
 83//   v_mul([3,4,5], [8,7,6]);  // Returns [24, 28, 30]
 84function v_mul(v1, v2) = 
 85    assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
 86    [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
 87    
 88
 89// Function: v_div()
 90// Usage:
 91//   v3 = v_div(v1, v2);
 92// Description:
 93//   Element-wise vector division.  Divides each element of vector `v1` by
 94//   the corresponding element of vector `v2`.  Returns a vector of the quotients.
 95// Arguments:
 96//   v1 = The first vector.
 97//   v2 = The second vector.
 98// Example:
 99//   v_div([24,28,30], [8,7,6]);  // Returns [3, 4, 5]
100function v_div(v1, v2) = 
101    assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
102    [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
103
104
105// Function: v_abs()
106// Usage:
107//   v2 = v_abs(v);
108// Description: Returns a vector of the absolute value of each element of vector `v`.
109// Arguments:
110//   v = The vector to get the absolute values of.
111// Example:
112//   v_abs([-1,3,-9]);  // Returns: [1,3,9]
113function v_abs(v) =
114    assert( is_vector(v), "Invalid vector" ) 
115    [for (x=v) abs(x)];
116
117
118// Function: v_floor()
119// Usage:
120//   v2 = v_floor(v);
121// Description:
122//   Returns the given vector after performing a `floor()` on all items.
123function v_floor(v) =
124    assert( is_vector(v), "Invalid vector" ) 
125    [for (x=v) floor(x)];
126
127
128// Function: v_ceil()
129// Usage:
130//   v2 = v_ceil(v);
131// Description:
132//   Returns the given vector after performing a `ceil()` on all items.
133function v_ceil(v) =
134    assert( is_vector(v), "Invalid vector" ) 
135    [for (x=v) ceil(x)];
136
137
138// Function: v_lookup()
139// Usage:
140//   v2 = v_lookup(x, v);
141// Description:
142//   Works just like the built-in function [`lookup()`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Mathematical_Functions#lookup), except that it can also interpolate between vector result values of the same length.
143// Arguments:
144//   x = The scalar value to look up.
145//   v = A list of [KEY,VAL] pairs. KEYs are scalars.  VALs should either all be scalar, or all be vectors of the same length.
146// Example:
147//   x = v_lookup(4.5, [[4, [3,4,5]], [5, [5,6,7]]]);  // Returns: [4,5,6]
148function v_lookup(x, v) =
149    is_num(v[0][1])? lookup(x,v) :
150    let(
151        i = lookup(x, [for (i=idx(v)) [v[i].x,i]]),
152        vlo = v[floor(i)],
153        vhi = v[ceil(i)],
154        lo = vlo[1],
155        hi = vhi[1]
156    )
157    assert(is_vector(lo) && is_vector(hi),
158        "Result values must all be numbers, or all be vectors.")
159    assert(len(lo) == len(hi), "Vector result values must be the same length")
160    vlo.x == vhi.x? vlo[1] :
161    let( u = (x - vlo.x) / (vhi.x - vlo.x) )
162    lerp(lo,hi,u);
163
164
165// Section: Vector Properties
166
167
168// Function: unit()
169// Usage:
170//   v = unit(v, [error]);
171// Description:
172//   Returns the unit length normalized version of vector v.  If passed a zero-length vector,
173//   asserts an error unless `error` is given, in which case the value of `error` is returned.
174// Arguments:
175//   v = The vector to normalize.
176//   error = If given, and input is a zero-length vector, this value is returned.  Default: Assert error on zero-length vector.
177// Example:
178//   v1 = unit([10,0,0]);   // Returns: [1,0,0]
179//   v2 = unit([0,10,0]);   // Returns: [0,1,0]
180//   v3 = unit([0,0,10]);   // Returns: [0,0,1]
181//   v4 = unit([0,-10,0]);  // Returns: [0,-1,0]
182//   v5 = unit([0,0,0],[1,2,3]);    // Returns: [1,2,3]
183//   v6 = unit([0,0,0]);    // Asserts an error.
184function unit(v, error=[[["ASSERT"]]]) =
185    assert(is_vector(v), "Invalid vector")
186    norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Cannot normalize a zero vector") : error) :
187    v/norm(v);
188
189
190// Function: v_theta()
191// Usage:
192//   theta = v_theta([X,Y]);
193// Description:
194//   Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
195function v_theta(v) =
196    assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
197    atan2(v.y,v.x);
198
199
200
201// Function: vector_angle()
202// Usage:
203//   ang = vector_angle(v1,v2);
204//   ang = vector_angle([v1,v2]);
205//   ang = vector_angle(PT1,PT2,PT3);
206//   ang = vector_angle([PT1,PT2,PT3]);
207// Description:
208//   If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
209//   If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
210//   If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
211//   If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
212// Arguments:
213//   v1 = First vector or point.
214//   v2 = Second vector or point.
215//   v3 = Third point in three point mode.
216// Example:
217//   ang1 = vector_angle(UP,LEFT);     // Returns: 90
218//   ang2 = vector_angle(RIGHT,LEFT);  // Returns: 180
219//   ang3 = vector_angle(UP+RIGHT,RIGHT);  // Returns: 45
220//   ang4 = vector_angle([10,10], [0,0], [10,-10]);  // Returns: 90
221//   ang5 = vector_angle([10,0,10], [0,0,0], [-10,10,0]);  // Returns: 120
222//   ang6 = vector_angle([[10,0,10], [0,0,0], [-10,10,0]]);  // Returns: 120
223function vector_angle(v1,v2,v3) =
224    assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
225            || is_consistent([v1,v2,v3]) ,
226            "Bad arguments.")
227    assert( is_vector(v1) || is_consistent(v1), "Bad arguments.") 
228    let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
229                ! is_undef(v2) ? [v1,v2] :
230                len(v1) == 3   ? [v1[0]-v1[1], v1[2]-v1[1]] 
231                               : v1
232    )
233    assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
234    let(
235        norm0 = norm(vecs[0]),
236        norm1 = norm(vecs[1])
237    )
238    assert(norm0>0 && norm1>0, "Zero length vector.")
239    // NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
240    acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
241    
242
243// Function: vector_axis()
244// Usage:
245//   axis = vector_axis(v1,v2);
246//   axis = vector_axis([v1,v2]);
247//   axis = vector_axis(PT1,PT2,PT3);
248//   axis = vector_axis([PT1,PT2,PT3]);
249// Description:
250//   If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
251//   If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
252//   If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
253//   If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
254// Arguments:
255//   v1 = First vector or point.
256//   v2 = Second vector or point.
257//   v3 = Third point in three point mode.
258// Example:
259//   axis1 = vector_axis(UP,LEFT);     // Returns: [0,-1,0] (FWD)
260//   axis2 = vector_axis(RIGHT,LEFT);  // Returns: [0,-1,0] (FWD)
261//   axis3 = vector_axis(UP+RIGHT,RIGHT);  // Returns: [0,1,0] (BACK)
262//   axis4 = vector_axis([10,10], [0,0], [10,-10]);  // Returns: [0,0,-1] (DOWN)
263//   axis5 = vector_axis([10,0,10], [0,0,0], [-10,10,0]);  // Returns: [-0.57735, -0.57735, 0.57735]
264//   axis6 = vector_axis([[10,0,10], [0,0,0], [-10,10,0]]);  // Returns: [-0.57735, -0.57735, 0.57735]
265function vector_axis(v1,v2=undef,v3=undef) =
266    is_vector(v3)
267    ?   assert(is_consistent([v3,v2,v1]), "Bad arguments.")
268        vector_axis(v1-v2, v3-v2)
269    :   assert( is_undef(v3), "Bad arguments.")
270        is_undef(v2)
271        ?   assert( is_list(v1), "Bad arguments.")
272            len(v1) == 2 
273            ?   vector_axis(v1[0],v1[1]) 
274            :   vector_axis(v1[0],v1[1],v1[2])
275        :   assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
276                    , "Bad arguments.")  
277            let(
278              eps = 1e-6,
279              w1 = point3d(v1/norm(v1)),
280              w2 = point3d(v2/norm(v2)),
281              w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2 
282                   : (norm(v_abs(w2)-UP) > eps)? UP 
283                   : RIGHT
284            ) unit(cross(w1,w3));
285
286
287
288
289// Section: Vector Searching
290
291
292// Function: pointlist_bounds()
293// Usage:
294//   pt_pair = pointlist_bounds(pts);
295// Topics: Geometry, Bounding Boxes, Bounds
296// Description:
297//   Finds the bounds containing all the points in `pts` which can be a list of points in any dimension.
298//   Returns a list of two items: a list of the minimums and a list of the maximums.  For example, with
299//   3d points `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
300// Arguments:
301//   pts = List of points.
302function pointlist_bounds(pts) =
303    assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
304    let(
305        select = ident(len(pts[0])),
306        spread = [
307            for(i=[0:len(pts[0])-1])
308            let( spreadi = pts*select[i] )
309            [ min(spreadi), max(spreadi) ]
310        ]
311    ) transpose(spread);
312
313
314
315// Function: closest_point()
316// Usage:
317//   index = closest_point(pt, points);
318// Topics: Geometry, Points, Distance
319// Description:
320//   Given a list of `points`, finds the index of the closest point to `pt`.
321// Arguments:
322//   pt = The point to find the closest point to.
323//   points = The list of points to search.
324function closest_point(pt, points) =
325    assert( is_vector(pt), "Invalid point." )
326    assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
327    min_index([for (p=points) norm(p-pt)]);
328
329
330// Function: furthest_point()
331// Usage:
332//   index = furthest_point(pt, points);
333// Topics: Geometry, Points, Distance
334// Description:
335//   Given a list of `points`, finds the index of the furthest point from `pt`.
336// Arguments:
337//   pt = The point to find the farthest point from.
338//   points = The list of points to search.
339function furthest_point(pt, points) =
340    assert( is_vector(pt), "Invalid point." )
341    assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
342    max_index([for (p=points) norm(p-pt)]);
343
344
345// Function: vector_search()
346// Usage:
347//   indices = vector_search(query, r, target);
348// See Also: vector_search_tree(), vector_nearest()
349// Topics: Search, Points, Closest
350// Description:
351//   Given a list of query points `query` and a `target` to search, 
352//   finds the points in `target` that match each query point. A match holds when the 
353//   distance between a point in `target` and a query point is less than or equal to `r`. 
354//   The returned list will have a list for each query point containing, in arbitrary 
355//   order, the indices of all points that match that query point. 
356//   The `target` may be a simple list of points or a search tree.
357//   When `target` is a large list of points, a search tree is constructed to 
358//   speed up the search with an order around O(log n) per query point. 
359//   For small point lists, a direct search is done dispensing a tree construction. 
360//   Alternatively, `target` may be a search tree built with `vector_search_tree()`.
361//   In that case, that tree is parsed looking for matches.
362//   An empty list of query points will return a empty output list.
363//   An empty list of target points will return a output list with an empty list for each query point.
364// Arguments:
365//   query = list of points to find matches for.
366//   r = the search radius.
367//   target = list of the points to search for matches or a search tree.
368// Example: A set of four queries to find points within 1 unit of the query.  The circles show the search region and all have radius 1.  
369//   $fn=32;
370//   k = 2000;
371//   points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
372//   queries = [for(i=[3,7],j=[3,7]) [i,j]];
373//   search_ind = vector_search(queries, points, 1);
374//   move_copies(points) circle(r=.08);
375//   for(i=idx(queries)){
376//       color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
377//       color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
378//   }
379// Example: when a series of searches with different radius are needed, its is faster to pre-compute the tree
380//   $fn=32;
381//   k = 2000;
382//   points = list_to_matrix(rands(0,10,k*2),2,seed=13333);
383//   queries1 = [for(i=[3,7]) [i,i]];
384//   queries2 = [for(i=[3,7]) [10-i,i]];
385//   r1 = 1;
386//   r2 = .7;
387//   search_tree = vector_search_tree(points);
388//   search_1 = vector_search(queries1, r1, search_tree);
389//   search_2 = vector_search(queries2, r2, search_tree);
390//   move_copies(points) circle(r=.08);
391//   for(i=idx(queries1)){
392//       color("blue")stroke(move(queries1[i],circle(r=r1)), closed=true, width=.08);
393//       color("red") move_copies(select(points, search_1[i])) circle(r=.08);
394//   }
395//   for(i=idx(queries2)){
396//       color("green")stroke(move(queries2[i],circle(r=r2)), closed=true, width=.08);
397//       color("red") move_copies(select(points, search_2[i])) circle(r=.08);
398//   }
399function vector_search(query, r, target) =
400    query==[] ? [] :
401    is_list(query) && target==[] ? is_vector(query) ? [] : [for(q=query) [] ] :
402    assert( is_finite(r) && r>=0, 
403            "The query radius should be a positive number." )
404    let(
405        tgpts  = is_matrix(target),   // target is a point list
406        tgtree = is_list(target)      // target is a tree
407                 && (len(target)==2)
408                 && is_matrix(target[0])
409                 && is_list(target[1])
410                 && (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
411    )
412    assert( tgpts || tgtree, 
413            "The target should be a list of points or a search tree compatible with the query." )
414    let( 
415        dim    = tgpts ? len(target[0]) : len(target[0][0]),
416        simple = is_vector(query, dim)
417        )
418    assert( simple || is_matrix(query,undef,dim), 
419            "The query points should be a list of points compatible with the target point list.")
420    tgpts 
421    ?   len(target)<=400
422        ?   simple ? [for(i=idx(target)) if(norm(target[i]-query)<=r) i ] :
423            [for(q=query) [for(i=idx(target)) if(norm(target[i]-q)<=r) i ] ]
424        :   let( tree = _bt_tree(target, count(len(target)), leafsize=25) )
425            simple ? _bt_search(query, r, target, tree) :
426            [for(q=query) _bt_search(q, r, target, tree)]
427    :   simple ?  _bt_search(query, r, target[0], target[1]) :
428        [for(q=query) _bt_search(q, r, target[0], target[1])];
429
430
431//Ball tree search
432function _bt_search(query, r, points, tree) = 
433    assert( is_list(tree) 
434            && (   ( len(tree)==1 && is_list(tree[0]) )
435                || ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ), 
436            "The tree is invalid.")
437    len(tree)==1 
438    ?   assert( tree[0]==[] || is_vector(tree[0]), "The tree is invalid." )
439        [for(i=tree[0]) if(norm(points[i]-query)<=r) i ]
440    :   norm(query-points[tree[0]]) > r+tree[1] ? [] :
441        concat( 
442            [ if(norm(query-points[tree[0]])<=r) tree[0] ],
443            _bt_search(query, r, points, tree[2]),
444            _bt_search(query, r, points, tree[3]) ) ;
445     
446
447// Function: vector_search_tree()
448// Usage:
449//    tree = vector_search_tree(points,leafsize);
450// See Also: vector_nearest(), vector_search()
451// Topics: Search, Points, Closest
452// Description:
453//    Construct a search tree for the given list of points to be used as input
454//    to the function `vector_search()`. The use of a tree speeds up the
455//    search process. The tree construction stops branching when 
456//    a tree node represents a number of points less or equal to `leafsize`.
457//    Search trees are ball trees. Constructing the
458//    tree should be O(n log n) and searches should be O(log n), though real life
459//    performance depends on how the data is distributed, and it will deteriorate
460//    for high data dimensions.  This data structure is useful when you will be
461//    performing many searches of the same data, so that the cost of constructing 
462//    the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
463//    For a small lists of points, the search with a tree may be more expensive
464//    than direct comparisons. The argument `treemin` sets the minimum length of 
465//    point set for which a tree search will be done by `vector_search`.
466//    For an empty list of points it returns an empty list.
467// Arguments:
468//    points = list of points to store in the search tree.
469//    leafsize = the size of the tree leaves. Default: 25
470//    treemin = the minimum size of the point list for which a tree search is done. Default: 400
471// Example: A set of four queries to find points within 1 unit of the query.  The circles show the search region and all have radius 1.  
472//   $fn=32;
473//   k = 2000;
474//   points = random_points(k, scale=10, dim=2,seed=13333);
475//   queries = [for(i=[3,7],j=[3,7]) [i,j]];
476//   search_tree = vector_search_tree(points);
477//   search_ind = vector_search(queries,1,search_tree);
478//   move_copies(points) circle(r=.08);
479//   for(i=idx(queries)){
480//       color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
481//       color("red")  move_copies(select(points, search_ind[i])) circle(r=.08);
482//   }
483function vector_search_tree(points, leafsize=25, treemin=400) =
484    points==[] ? [] :
485    assert( is_matrix(points), "The input list entries should be points." )
486    assert( is_int(leafsize) && leafsize>=1,
487            "The tree leaf size should be an integer greater than zero.")
488    len(points)<treemin ? points :
489    [ points, _bt_tree(points, count(len(points)), leafsize) ];
490
491
492//Ball tree construction
493function _bt_tree(points, ind, leafsize=25) =
494    len(ind)<=leafsize ? [ind] :
495    let( 
496        bounds = pointlist_bounds(select(points,ind)),
497        coord  = max_index(bounds[1]-bounds[0]), 
498        projc  = [for(i=ind) points[i][coord] ],
499        meanpr = mean(projc), 
500        pivot  = min_index([for(p=projc) abs(p-meanpr)]),
501        radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
502        Lind   = [for(i=idx(ind)) if(projc[i]<=meanpr && i!=pivot) ind[i] ],
503        Rind   = [for(i=idx(ind)) if(projc[i] >meanpr && i!=pivot) ind[i] ]
504      )
505    [ ind[pivot], radius, _bt_tree(points, Lind, leafsize), _bt_tree(points, Rind, leafsize) ];
506
507
508// Function: vector_nearest()
509// Usage:
510//    indices = vector_nearest(query, k, target);
511// See Also: vector_search(), vector_search_tree()
512// Description:
513//    Search `target` for the `k` points closest to point `query`.
514//    The input `target` is either a list of points to search or a search tree
515//    pre-computed by `vector_search_tree(). A list is returned containing the indices
516//    of the points found in sorted order, closest point first.  
517// Arguments:
518//    query = point to search for
519//    k = number of neighbors to return
520//    target = a list of points or a search tree to search in
521// Example:  Four queries to find the 15 nearest points.  The circles show the radius defined by the most distant query result.  Note they are different for each query.  
522//    $fn=32;
523//    k = 1000;
524//    points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
525//    tree = vector_search_tree(points);
526//    queries = [for(i=[3,7],j=[3,7]) [i,j]];
527//    search_ind = [for(q=queries) vector_nearest(q, 15, tree)];
528//    move_copies(points) circle(r=.08);
529//    for(i=idx(queries)){
530//        circle = circle(r=norm(points[last(search_ind[i])]-queries[i]));
531//        color("red")  move_copies(select(points, search_ind[i])) circle(r=.08);
532//        color("blue") stroke(move(queries[i], circle), closed=true, width=.08);  
533//    }
534function vector_nearest(query, k, target) =
535    assert(is_int(k) && k>0)
536    assert(is_vector(query), "Query must be a vector.")
537    let(
538        tgpts  = is_matrix(target,undef,len(query)), // target is a point list
539        tgtree = is_list(target)      // target is a tree
540                 && (len(target)==2)
541                 && is_matrix(target[0],undef,len(query))
542                 && (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
543    )
544    assert( tgpts || tgtree, 
545            "The target should be a list of points or a search tree compatible with the query." )
546    assert((tgpts && (k<=len(target))) || (tgtree && (k<=len(target[0]))), 
547            "More results are requested than the number of points.")
548    tgpts
549    ?   let( tree = _bt_tree(target, count(len(target))) )
550        column(_bt_nearest( query, k, target,  tree),0)
551    :   column(_bt_nearest( query, k, target[0], target[1]),0);
552
553
554//Ball tree nearest
555function _bt_nearest(p, k, points, tree, answers=[]) =
556    assert( is_list(tree) 
557            && (   ( len(tree)==1 && is_list(tree[0]) )
558                || ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ), 
559            "The tree is invalid.")
560    len(tree)==1
561    ?   _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]])
562    :   let( d = norm(p-points[tree[0]]) )
563        len(answers)==k && ( d > last(answers)[1]+tree[1] ) ? answers :
564        let(
565            answers1 = _insert_sorted(answers, k, [tree[0],d]),
566            answers2 = _bt_nearest(p, k, points, tree[2], answers1),
567            answers3 = _bt_nearest(p, k, points, tree[3], answers2)
568         )
569         answers3;
570
571
572function _insert_sorted(list, k, new) =
573    (len(list)==k && new[1]>= last(list)[1]) ? list
574    : [
575        for(entry=list) if (entry[1]<=new[1]) entry,
576        new,
577        for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
578      ];
579
580
581function _insert_many(list, k, newlist,i=0) =
582  i==len(newlist) 
583    ? list
584    : assert(is_vector(newlist[i],2), "The tree is invalid.")
585      _insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
586
587
588
589// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap