1//////////////////////////////////////////////////////////////////////
   2// LibFile: math.scad
   3//   Assorted math functions, including linear interpolation, list operations (sums, mean, products),
   4//   convolution, quantization, log2, hyperbolic trig functions, random numbers, derivatives,
   5//   polynomials, and root finding. 
   6// Includes:
   7//   include <BOSL2/std.scad>
   8// FileGroup: Math
   9// FileSummary: Math on lists, special functions, quantization, random numbers, calculus, root finding
  10//  
  11// FileFootnotes: STD=Included in std.scad
  12//////////////////////////////////////////////////////////////////////
  13
  14// Section: Math Constants
  15
  16// Constant: PHI
  17// Description: The golden ratio phi.
  18PHI = (1+sqrt(5))/2;
  19
  20// Constant: EPSILON
  21// Description: A really small value useful in comparing floating point numbers.  ie: abs(a-b)<EPSILON
  22EPSILON = 1e-9;
  23
  24// Constant: INF
  25// Description: The value `inf`, useful for comparisons.
  26INF = 1/0;
  27
  28// Constant: NAN
  29// Description: The value `nan`, useful for comparisons.
  30NAN = acos(2);
  31
  32
  33
  34// Section: Interpolation and Counting
  35
  36
  37// Function: count()
  38// Usage:
  39//   list = count(n, [s], [step], [reverse]);
  40// Description:
  41//   Creates a list of `n` numbers, starting at `s`, incrementing by `step` each time.
  42//   You can also pass a list for n and then the length of the input list is used.  
  43// Arguments:
  44//   n = The length of the list of numbers to create, or a list to match the length of
  45//   s = The starting value of the list of numbers.
  46//   step = The amount to increment successive numbers in the list.
  47//   reverse = Reverse the list.  Default: false.
  48// See Also: idx()
  49// Example:
  50//   nl1 = count(5);  // Returns: [0,1,2,3,4]
  51//   nl2 = count(5,3);  // Returns: [3,4,5,6,7]
  52//   nl3 = count(4,3,2);  // Returns: [3,5,7,9]
  53//   nl4 = count(5,reverse=true);    // Returns: [4,3,2,1,0]
  54//   nl5 = count(5,3,reverse=true);  // Returns: [7,6,5,4,3]
  55function count(n,s=0,step=1,reverse=false) = let(n=is_list(n) ? len(n) : n)
  56                                             reverse? [for (i=[n-1:-1:0]) s+i*step]
  57                                                    : [for (i=[0:1:n-1]) s+i*step];
  58
  59
  60// Function: lerp()
  61// Usage:
  62//   x = lerp(a, b, u);
  63//   l = lerp(a, b, LIST);
  64// Description:
  65//   Interpolate between two values or vectors.
  66//   If `u` is given as a number, returns the single interpolated value.
  67//   If `u` is 0.0, then the value of `a` is returned.
  68//   If `u` is 1.0, then the value of `b` is returned.
  69//   If `u` is a range, or list of numbers, returns a list of interpolated values.
  70//   It is valid to use a `u` value outside the range 0 to 1.  The result will be an extrapolation
  71//   along the slope formed by `a` and `b`.
  72// Arguments:
  73//   a = First value or vector.
  74//   b = Second value or vector.
  75//   u = The proportion from `a` to `b` to calculate.  Standard range is 0.0 to 1.0, inclusive.  If given as a list or range of values, returns a list of results.
  76// Example:
  77//   x = lerp(0,20,0.3);  // Returns: 6
  78//   x = lerp(0,20,0.8);  // Returns: 16
  79//   x = lerp(0,20,-0.1); // Returns: -2
  80//   x = lerp(0,20,1.1);  // Returns: 22
  81//   p = lerp([0,0],[20,10],0.25);  // Returns [5,2.5]
  82//   l = lerp(0,20,[0.4,0.6]);  // Returns: [8,12]
  83//   l = lerp(0,20,[0.25:0.25:0.75]);  // Returns: [5,10,15]
  84// Example(2D):
  85//   p1 = [-50,-20];  p2 = [50,30];
  86//   stroke([p1,p2]);
  87//   pts = lerp(p1, p2, [0:1/8:1]);
  88//   // Points colored in ROYGBIV order.
  89//   rainbow(pts) translate($item) circle(d=3,$fn=8);
  90function lerp(a,b,u) =
  91    assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
  92    is_finite(u)? (1-u)*a + u*b :
  93    assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.")
  94    [for (v = u) (1-v)*a + v*b ];
  95
  96
  97// Function: lerpn()
  98// Usage:
  99//   x = lerpn(a, b, n);
 100//   x = lerpn(a, b, n, [endpoint]);
 101// Description:
 102//   Returns exactly `n` values, linearly interpolated between `a` and `b`.
 103//   If `endpoint` is true, then the last value will exactly equal `b`.
 104//   If `endpoint` is false, then the last value will be `a+(b-a)*(1-1/n)`.
 105// Arguments:
 106//   a = First value or vector.
 107//   b = Second value or vector.
 108//   n = The number of values to return.
 109//   endpoint = If true, the last value will be exactly `b`.  If false, the last value will be one step less.
 110// Example:
 111//   l = lerpn(-4,4,9);        // Returns: [-4,-3,-2,-1,0,1,2,3,4]
 112//   l = lerpn(-4,4,8,false);  // Returns: [-4,-3,-2,-1,0,1,2,3]
 113//   l = lerpn(0,1,6);         // Returns: [0, 0.2, 0.4, 0.6, 0.8, 1]
 114//   l = lerpn(0,1,5,false);   // Returns: [0, 0.2, 0.4, 0.6, 0.8]
 115function lerpn(a,b,n,endpoint=true) =
 116    assert(same_shape(a,b), "Bad or inconsistent inputs to lerpn")
 117    assert(is_int(n))
 118    assert(is_bool(endpoint))
 119    let( d = n - (endpoint? 1 : 0) )
 120    [for (i=[0:1:n-1]) let(u=i/d) (1-u)*a + u*b];
 121
 122
 123
 124// Section: Miscellaneous Functions 
 125
 126// Function: sqr()
 127// Usage:
 128//   x2 = sqr(x);
 129// Description:
 130//   If given a number, returns the square of that number,
 131//   If given a vector, returns the sum-of-squares/dot product of the vector elements.
 132//   If given a matrix, returns the matrix multiplication of the matrix with itself.
 133// Example:
 134//   sqr(3);     // Returns: 9
 135//   sqr(-4);    // Returns: 16
 136//   sqr([2,3,4]); // Returns: 29
 137//   sqr([[1,2],[3,4]]);  // Returns [[7,10],[15,22]]
 138function sqr(x) = 
 139    assert(is_finite(x) || is_vector(x) || is_matrix(x), "Input is not a number nor a list of numbers.")
 140    x*x;
 141
 142
 143// Function: log2()
 144// Usage:
 145//   val = log2(x);
 146// Description:
 147//   Returns the logarithm base 2 of the value given.
 148// Example:
 149//   log2(0.125);  // Returns: -3
 150//   log2(16);     // Returns: 4
 151//   log2(256);    // Returns: 8
 152function log2(x) = 
 153    assert( is_finite(x), "Input is not a number.")
 154    ln(x)/ln(2);
 155
 156// this may return NAN or INF; should it check x>0 ?
 157
 158// Function: hypot()
 159// Usage:
 160//   l = hypot(x, y, [z]);
 161// Description:
 162//   Calculate hypotenuse length of a 2D or 3D triangle.
 163// Arguments:
 164//   x = Length on the X axis.
 165//   y = Length on the Y axis.
 166//   z = Length on the Z axis.  Optional.
 167// Example:
 168//   l = hypot(3,4);  // Returns: 5
 169//   l = hypot(3,4,5);  // Returns: ~7.0710678119
 170function hypot(x,y,z=0) = 
 171    assert( is_vector([x,y,z]), "Improper number(s).")
 172    norm([x,y,z]);
 173
 174
 175// Function: factorial()
 176// Usage:
 177//   x = factorial(n, [d]);
 178// Description:
 179//   Returns the factorial of the given integer value, or n!/d! if d is given.  
 180// Arguments:
 181//   n = The integer number to get the factorial of.  (n!)
 182//   d = If given, the returned value will be (n! / d!)
 183// Example:
 184//   x = factorial(4);  // Returns: 24
 185//   y = factorial(6);  // Returns: 720
 186//   z = factorial(9);  // Returns: 362880
 187function factorial(n,d=0) =
 188    assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers")
 189    assert(d<=n, "d cannot be larger than n")
 190    product([1,for (i=[n:-1:d+1]) i]);
 191
 192
 193// Function: binomial()
 194// Usage:
 195//   x = binomial(n);
 196// Description:
 197//   Returns the binomial coefficients of the integer `n`.  
 198// Arguments:
 199//   n = The integer to get the binomial coefficients of
 200// Example:
 201//   x = binomial(3);  // Returns: [1,3,3,1]
 202//   y = binomial(4);  // Returns: [1,4,6,4,1]
 203//   z = binomial(6);  // Returns: [1,6,15,20,15,6,1]
 204function binomial(n) =
 205    assert( is_int(n) && n>0, "Input is not an integer greater than 0.")
 206    [for( c = 1, i = 0; 
 207        i<=n; 
 208         c = c*(n-i)/(i+1), i = i+1
 209        ) c ] ;
 210
 211
 212// Function: binomial_coefficient()
 213// Usage:
 214//   x = binomial_coefficient(n, k);
 215// Description:
 216//   Returns the k-th binomial coefficient of the integer `n`.  
 217// Arguments:
 218//   n = The integer to get the binomial coefficient of
 219//   k = The binomial coefficient index
 220// Example:
 221//   x = binomial_coefficient(3,2);  // Returns: 3
 222//   y = binomial_coefficient(10,6); // Returns: 210
 223function binomial_coefficient(n,k) =
 224    assert( is_int(n) && is_int(k), "Some input is not a number.")
 225    k < 0 || k > n ? 0 :
 226    k ==0 || k ==n ? 1 :
 227    let( k = min(k, n-k),
 228         b = [for( c = 1, i = 0; 
 229                   i<=k; 
 230                   c = c*(n-i)/(i+1), i = i+1
 231                 ) c] )
 232    b[len(b)-1];
 233
 234
 235// Function: gcd()
 236// Usage:
 237//   x = gcd(a,b)
 238// Description:
 239//   Computes the Greatest Common Divisor/Factor of `a` and `b`.  
 240function gcd(a,b) =
 241    assert(is_int(a) && is_int(b),"Arguments to gcd must be integers")
 242    b==0 ? abs(a) : gcd(b,a % b);
 243
 244
 245// Computes lcm for two integers
 246function _lcm(a,b) =
 247    assert(is_int(a) && is_int(b), "Invalid non-integer parameters to lcm")
 248    assert(a!=0 && b!=0, "Arguments to lcm should not be zero")
 249    abs(a*b) / gcd(a,b);
 250
 251
 252// Computes lcm for a list of values
 253function _lcmlist(a) =
 254    len(a)==1 ? a[0] :
 255    _lcmlist(concat(lcm(a[0],a[1]),list_tail(a,2)));
 256
 257
 258// Function: lcm()
 259// Usage:
 260//   div = lcm(a, b);
 261//   divs = lcm(list);
 262// Description:
 263//   Computes the Least Common Multiple of the two arguments or a list of arguments.  Inputs should
 264//   be non-zero integers.  The output is always a positive integer.  It is an error to pass zero
 265//   as an argument.  
 266function lcm(a,b=[]) =
 267    !is_list(a) && !is_list(b) 
 268    ?   _lcm(a,b) 
 269    :   let( arglist = concat(force_list(a),force_list(b)) )
 270        assert(len(arglist)>0, "Invalid call to lcm with empty list(s)")
 271        _lcmlist(arglist);
 272
 273
 274
 275
 276// Section: Hyperbolic Trigonometry
 277
 278// Function: sinh()
 279// Usage:
 280//   a = sinh(x);
 281// Description: Takes a value `x`, and returns the hyperbolic sine of it.
 282function sinh(x) =
 283    assert(is_finite(x), "The input must be a finite number.")
 284    (exp(x)-exp(-x))/2;
 285
 286
 287// Function: cosh()
 288// Usage:
 289//   a = cosh(x);
 290// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
 291function cosh(x) =
 292    assert(is_finite(x), "The input must be a finite number.")
 293    (exp(x)+exp(-x))/2;
 294
 295
 296// Function: tanh()
 297// Usage:
 298//   a = tanh(x);
 299// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
 300function tanh(x) =
 301    assert(is_finite(x), "The input must be a finite number.")
 302    sinh(x)/cosh(x);
 303
 304
 305// Function: asinh()
 306// Usage:
 307//   a = asinh(x);
 308// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
 309function asinh(x) =
 310    assert(is_finite(x), "The input must be a finite number.")
 311    ln(x+sqrt(x*x+1));
 312
 313
 314// Function: acosh()
 315// Usage:
 316//   a = acosh(x);
 317// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
 318function acosh(x) =
 319    assert(is_finite(x), "The input must be a finite number.")
 320    ln(x+sqrt(x*x-1));
 321
 322
 323// Function: atanh()
 324// Usage:
 325//   a = atanh(x);
 326// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
 327function atanh(x) =
 328    assert(is_finite(x), "The input must be a finite number.")
 329    ln((1+x)/(1-x))/2;
 330
 331
 332// Section: Quantization
 333
 334// Function: quant()
 335// Usage:
 336//   num = quant(x, y);
 337// Description:
 338//   Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
 339//   The value of `y` does NOT have to be an integer.  If `x` is a list, then every item
 340//   in that list will be recursively quantized.
 341// Arguments:
 342//   x = The value to quantize.
 343//   y = The non-zero integer quantum of the quantization.
 344// Example:
 345//   a = quant(12,4);    // Returns: 12
 346//   b = quant(13,4);    // Returns: 12
 347//   c = quant(13.1,4);  // Returns: 12
 348//   d = quant(14,4);    // Returns: 16
 349//   e = quant(14.1,4);  // Returns: 16
 350//   f = quant(15,4);    // Returns: 16
 351//   g = quant(16,4);    // Returns: 16
 352//   h = quant(9,3);     // Returns: 9
 353//   i = quant(10,3);    // Returns: 9
 354//   j = quant(10.4,3);  // Returns: 9
 355//   k = quant(10.5,3);  // Returns: 12
 356//   l = quant(11,3);    // Returns: 12
 357//   m = quant(12,3);    // Returns: 12
 358//   n = quant(11,2.5);  // Returns: 10
 359//   o = quant(12,2.5);  // Returns: 12.5
 360//   p = quant([12,13,13.1,14,14.1,15,16],4);  // Returns: [12,12,12,16,16,16,16]
 361//   q = quant([9,10,10.4,10.5,11,12],3);      // Returns: [9,9,9,12,12,12]
 362//   r = quant([[9,10,10.4],[10.5,11,12]],3);  // Returns: [[9,9,9],[12,12,12]]
 363function quant(x,y) =
 364    assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
 365    is_list(x)
 366    ?   [for (v=x) quant(v,y)]
 367    :   assert( is_finite(x), "The input to quantize is not a number nor a list of numbers.")
 368        floor(x/y+0.5)*y;
 369
 370
 371// Function: quantdn()
 372// Usage:
 373//   num = quantdn(x, y);
 374// Description:
 375//   Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
 376//   The value of `y` does NOT have to be an integer.  If `x` is a list, then every item in that
 377//   list will be recursively quantized down.
 378// Arguments:
 379//   x = The value to quantize.
 380//   y = The non-zero integer quantum of the quantization.
 381// Example:
 382//   a = quantdn(12,4);    // Returns: 12
 383//   b = quantdn(13,4);    // Returns: 12
 384//   c = quantdn(13.1,4);  // Returns: 12
 385//   d = quantdn(14,4);    // Returns: 12
 386//   e = quantdn(14.1,4);  // Returns: 12
 387//   f = quantdn(15,4);    // Returns: 12
 388//   g = quantdn(16,4);    // Returns: 16
 389//   h = quantdn(9,3);     // Returns: 9
 390//   i = quantdn(10,3);    // Returns: 9
 391//   j = quantdn(10.4,3);  // Returns: 9
 392//   k = quantdn(10.5,3);  // Returns: 9
 393//   l = quantdn(11,3);    // Returns: 9
 394//   m = quantdn(12,3);    // Returns: 12
 395//   n = quantdn(11,2.5);  // Returns: 10
 396//   o = quantdn(12,2.5);  // Returns: 10
 397//   p = quantdn([12,13,13.1,14,14.1,15,16],4);  // Returns: [12,12,12,12,12,12,16]
 398//   q = quantdn([9,10,10.4,10.5,11,12],3);      // Returns: [9,9,9,9,9,12]
 399//   r = quantdn([[9,10,10.4],[10.5,11,12]],3);  // Returns: [[9,9,9],[9,9,12]]
 400function quantdn(x,y) =
 401    assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
 402    is_list(x)
 403    ?   [for (v=x) quantdn(v,y)]
 404    :   assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
 405        floor(x/y)*y;
 406
 407
 408// Function: quantup()
 409// Usage:
 410//   num = quantup(x, y);
 411// Description:
 412//   Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
 413//   The value of `y` does NOT have to be an integer.  If `x` is a list, then every item in
 414//   that list will be recursively quantized up.
 415// Arguments:
 416//   x = The value to quantize.
 417//   y = The non-zero integer quantum of the quantization.
 418// Example:
 419//   a = quantup(12,4);    // Returns: 12
 420//   b = quantup(13,4);    // Returns: 16
 421//   c = quantup(13.1,4);  // Returns: 16
 422//   d = quantup(14,4);    // Returns: 16
 423//   e = quantup(14.1,4);  // Returns: 16
 424//   f = quantup(15,4);    // Returns: 16
 425//   g = quantup(16,4);    // Returns: 16
 426//   h = quantup(9,3);     // Returns: 9
 427//   i = quantup(10,3);    // Returns: 12
 428//   j = quantup(10.4,3);  // Returns: 12
 429//   k = quantup(10.5,3);  // Returns: 12
 430//   l = quantup(11,3);    // Returns: 12
 431//   m = quantup(12,3);    // Returns: 12
 432//   n = quantdn(11,2.5);  // Returns: 12.5
 433//   o = quantdn(12,2.5);  // Returns: 12.5
 434//   p = quantup([12,13,13.1,14,14.1,15,16],4);  // Returns: [12,16,16,16,16,16,16]
 435//   q = quantup([9,10,10.4,10.5,11,12],3);      // Returns: [9,12,12,12,12,12]
 436//   r = quantup([[9,10,10.4],[10.5,11,12]],3);  // Returns: [[9,12,12],[12,12,12]]
 437function quantup(x,y) =
 438    assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
 439    is_list(x)
 440    ?   [for (v=x) quantup(v,y)]
 441    :   assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
 442        ceil(x/y)*y;
 443
 444
 445// Section: Constraints and Modulos
 446
 447// Function: constrain()
 448// Usage:
 449//   val = constrain(v, minval, maxval);
 450// Description:
 451//   Constrains value to a range of values between minval and maxval, inclusive.
 452// Arguments:
 453//   v = value to constrain.
 454//   minval = minimum value to return, if out of range.
 455//   maxval = maximum value to return, if out of range.
 456// Example:
 457//   a = constrain(-5, -1, 1);   // Returns: -1
 458//   b = constrain(5, -1, 1);    // Returns: 1
 459//   c = constrain(0.3, -1, 1);  // Returns: 0.3
 460//   d = constrain(9.1, 0, 9);   // Returns: 9
 461//   e = constrain(-0.1, 0, 9);  // Returns: 0
 462function constrain(v, minval, maxval) = 
 463    assert( is_finite(v+minval+maxval), "Input must be finite number(s).")
 464    min(maxval, max(minval, v));
 465
 466
 467// Function: posmod()
 468// Usage:
 469//   mod = posmod(x, m)
 470// Description:
 471//   Returns the positive modulo `m` of `x`.  Value returned will be in the range 0 ... `m`-1.
 472// Arguments:
 473//   x = The value to constrain.
 474//   m = Modulo value.
 475// Example:
 476//   a = posmod(-700,360);  // Returns: 340
 477//   b = posmod(-270,360);  // Returns: 90
 478//   c = posmod(-120,360);  // Returns: 240
 479//   d = posmod(120,360);   // Returns: 120
 480//   e = posmod(270,360);   // Returns: 270
 481//   f = posmod(700,360);   // Returns: 340
 482//   g = posmod(3,2.5);     // Returns: 0.5
 483function posmod(x,m) = 
 484    assert( is_finite(x) && is_finite(m) && !approx(m,0) , "Input must be finite numbers. The divisor cannot be zero.")
 485    (x%m+m)%m;
 486
 487
 488// Function: modang()
 489// Usage:
 490//   ang = modang(x);
 491// Description:
 492//   Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
 493// Example:
 494//   a1 = modang(-700,360);  // Returns: 20
 495//   a2 = modang(-270,360);  // Returns: 90
 496//   a3 = modang(-120,360);  // Returns: -120
 497//   a4 = modang(120,360);   // Returns: 120
 498//   a5 = modang(270,360);   // Returns: -90
 499//   a6 = modang(700,360);   // Returns: -20
 500function modang(x) =
 501    assert( is_finite(x), "Input must be a finite number.")
 502    let(xx = posmod(x,360)) xx<180? xx : xx-360;
 503
 504
 505
 506// Section: Operations on Lists (Sums, Mean, Products)
 507
 508// Function: sum()
 509// Usage:
 510//   x = sum(v, [dflt]);
 511// Description:
 512//   Returns the sum of all entries in the given consistent list.
 513//   If passed an array of vectors, returns the sum the vectors.
 514//   If passed an array of matrices, returns the sum of the matrices.
 515//   If passed an empty list, the value of `dflt` will be returned.
 516// Arguments:
 517//   v = The list to get the sum of.
 518//   dflt = The default value to return if `v` is an empty list.  Default: 0
 519// Example:
 520//   sum([1,2,3]);  // returns 6.
 521//   sum([[1,2,3], [3,4,5], [5,6,7]]);  // returns [9, 12, 15]
 522function sum(v, dflt=0) =
 523    v==[]? dflt :
 524    assert(is_consistent(v), "Input to sum is non-numeric or inconsistent")
 525    is_finite(v[0]) || is_vector(v[0]) ? [for(i=v) 1]*v :
 526    _sum(v,v[0]*0);
 527
 528function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
 529
 530
 531
 532
 533// Function: mean()
 534// Usage:
 535//   x = mean(v);
 536// Description:
 537//   Returns the arithmetic mean/average of all entries in the given array.
 538//   If passed a list of vectors, returns a vector of the mean of each part.
 539// Arguments:
 540//   v = The list of values to get the mean of.
 541// Example:
 542//   mean([2,3,4]);  // returns 3.
 543//   mean([[1,2,3], [3,4,5], [5,6,7]]);  // returns [3, 4, 5]
 544function mean(v) = 
 545    assert(is_list(v) && len(v)>0, "Invalid list.")
 546    sum(v)/len(v);
 547
 548
 549
 550// Function: median()
 551// Usage:
 552//   middle = median(v)
 553// Description:
 554//   Returns the median of the given vector.  
 555function median(v) =
 556    assert(is_vector(v), "Input to median must be a vector")
 557    len(v)%2 ? max( list_smallest(v, ceil(len(v)/2)) ) :
 558    let( lowest = list_smallest(v, len(v)/2 + 1),
 559         max  = max(lowest),
 560         imax = search(max,lowest,1),
 561         max2 = max([for(i=idx(lowest)) if(i!=imax[0]) lowest[i] ])
 562    )
 563    (max+max2)/2;
 564
 565
 566// Function: deltas()
 567// Usage:
 568//   delts = deltas(v,[wrap]);
 569// Description:
 570//   Returns a list with the deltas of adjacent entries in the given list, optionally wrapping back to the front.
 571//   The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
 572//   Given [a,b,c,d], returns [b-a,c-b,d-c].
 573// Arguments:
 574//   v = The list to get the deltas of.
 575//   wrap = If true, wrap back to the start from the end.  ie: return the difference between the last and first items as the last delta.  Default: false
 576// Example:
 577//   deltas([2,5,9,17]);  // returns [3,4,8].
 578//   deltas([[1,2,3], [3,6,8], [4,8,11]]);  // returns [[2,4,5], [1,2,3]]
 579function deltas(v, wrap=false) = 
 580    assert( is_consistent(v) && len(v)>1 , "Inconsistent list or with length<=1.")
 581    [for (p=pair(v,wrap)) p[1]-p[0]] ;
 582
 583
 584// Function: cumsum()
 585// Usage:
 586//   sums = cumsum(v);
 587// Description:
 588//   Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
 589//   If passed an array of vectors, returns a list of cumulative vectors sums.
 590// Arguments:
 591//   v = The list to get the sum of.
 592// Example:
 593//   cumsum([1,1,1]);  // returns [1,2,3]
 594//   cumsum([2,2,2]);  // returns [2,4,6]
 595//   cumsum([1,2,3]);  // returns [1,3,6]
 596//   cumsum([[1,2,3], [3,4,5], [5,6,7]]);  // returns [[1,2,3], [4,6,8], [9,12,15]]
 597function cumsum(v) =
 598    assert(is_consistent(v), "The input is not consistent." )
 599    len(v)<=1 ? v :
 600    _cumsum(v,_i=1,_acc=[v[0]]);
 601
 602function _cumsum(v,_i=0,_acc=[]) =
 603   _i>=len(v) ? _acc :
 604    _cumsum( v, _i+1, [ each _acc, _acc[len(_acc)-1] + v[_i] ] );
 605
 606
 607
 608// Function: product()
 609// Usage:
 610//   x = product(v);
 611// Description:
 612//   Returns the product of all entries in the given list.
 613//   If passed a list of vectors of same dimension, returns a vector of products of each part.
 614//   If passed a list of square matrices, returns the resulting product matrix.
 615// Arguments:
 616//   v = The list to get the product of.
 617// Example:
 618//   product([2,3,4]);  // returns 24.
 619//   product([[1,2,3], [3,4,5], [5,6,7]]);  // returns [15, 48, 105]
 620function product(v) = 
 621    assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)), 
 622    "Invalid input.")
 623    _product(v, 1, v[0]);
 624
 625function _product(v, i=0, _tot) = 
 626    i>=len(v) ? _tot :
 627    _product( v, 
 628              i+1, 
 629              ( is_vector(v[i])? v_mul(_tot,v[i]) : _tot*v[i] ) );
 630               
 631
 632
 633// Function: cumprod()
 634// Description:
 635//   Returns a list where each item is the cumulative product of all items up to and including the corresponding entry in the input list.
 636//   If passed an array of vectors, returns a list of elementwise vector products.  If passed a list of square matrices returns matrix
 637//   products multiplying on the left, so a list `[A,B,C]` will produce the output `[A,BA,CBA]`.  
 638// Arguments:
 639//   list = The list to get the product of.
 640// Example:
 641//   cumprod([1,3,5]);  // returns [1,3,15]
 642//   cumprod([2,2,2]);  // returns [2,4,8]
 643//   cumprod([[1,2,3], [3,4,5], [5,6,7]]));  // returns [[1, 2, 3], [3, 8, 15], [15, 48, 105]]
 644function cumprod(list) =
 645   is_vector(list) ? _cumprod(list) :
 646   assert(is_consistent(list), "Input must be a consistent list of scalars, vectors or square matrices")
 647   is_matrix(list[0]) ? assert(len(list[0])==len(list[0][0]), "Matrices must be square") _cumprod(list) 
 648                      : _cumprod_vec(list);
 649
 650function _cumprod(v,_i=0,_acc=[]) =
 651    _i==len(v) ? _acc :
 652    _cumprod(
 653        v, _i+1,
 654        concat(
 655            _acc,
 656            [_i==0 ? v[_i] : v[_i]*_acc[len(_acc)-1]]
 657        )
 658    );
 659
 660function _cumprod_vec(v,_i=0,_acc=[]) =
 661    _i==len(v) ? _acc :
 662    _cumprod_vec(
 663        v, _i+1,
 664        concat(
 665            _acc,
 666            [_i==0 ? v[_i] : v_mul(_acc[len(_acc)-1],v[_i])]
 667        )
 668    );
 669
 670
 671
 672// Function: convolve()
 673// Usage:
 674//   x = convolve(p,q);
 675// Description:
 676//   Given two vectors, or one vector and a path or
 677//   two paths of the same dimension, finds the convolution of them.
 678//   If both parameter are vectors, returns the vector convolution.
 679//   If one parameter is a vector and the other a path,
 680//   convolves using products by scalars and returns a path. 
 681//   If both parameters are paths, convolve using scalar products
 682//   and returns a vector.
 683//   The returned vector or path has length len(p)+len(q)-1.
 684// Arguments:
 685//   p = The first vector or path.
 686//   q = The second vector or path.
 687// Example:
 688//   a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
 689//   b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
 690//   c = convolve([[1,1],[2,2],[3,1]],[1,2,1])); // Returns: [[1,1],[4,4],[8,6],[8,4],[3,1]]
 691//   d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns:  [3,9,11,7]
 692function convolve(p,q) =
 693    p==[] || q==[] ? [] :
 694    assert( (is_vector(p) || is_matrix(p))
 695            && ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) ,
 696            "The inputs should be vectors or paths all of the same dimension.")
 697    let( n = len(p),
 698         m = len(q))
 699    [for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
 700       sum([for(j=[k1:k2]) p[i-j]*q[j] ]) 
 701    ];
 702
 703
 704
 705// Function: sum_of_sines()
 706// Usage:
 707//   sum_of_sines(a,sines)
 708// Description:
 709//   Gives the sum of a series of sines, at a given angle.
 710// Arguments:
 711//   a = Angle to get the value for.
 712//   sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
 713// Example:
 714//   v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
 715function sum_of_sines(a, sines) =
 716    assert( is_finite(a) && is_matrix(sines,undef,3), "Invalid input.")
 717    sum([ for (s = sines) 
 718            let(
 719              ss=point3d(s),
 720              v=ss[0]*sin(a*ss[1]+ss[2])
 721            ) v
 722        ]);
 723
 724
 725
 726// Section: Random Number Generation
 727
 728// Function: rand_int()
 729// Usage:
 730//   rand_int(minval, maxval, n, [seed]);
 731// Description:
 732//   Return a list of random integers in the range of minval to maxval, inclusive.
 733// Arguments:
 734//   minval = Minimum integer value to return.
 735//   maxval = Maximum integer value to return.
 736//   N = Number of random integers to return.
 737//   seed = If given, sets the random number seed.
 738// Example:
 739//   ints = rand_int(0,100,3);
 740//   int = rand_int(-10,10,1)[0];
 741function rand_int(minval, maxval, n, seed=undef) =
 742    assert( is_finite(minval+maxval+n) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.")
 743    assert(maxval >= minval, "Max value cannot be smaller than minval")
 744    let (rvect = is_def(seed) ? rands(minval,maxval+1,n,seed) : rands(minval,maxval+1,n))
 745    [for(entry = rvect) floor(entry)];
 746
 747
 748// Function: random_points()
 749// Usage:
 750//    points = random_points(n, dim, [scale], [seed]);
 751// See Also: random_polygon(), spherical_random_points()
 752// Topics: Random, Points
 753// Description:
 754//    Generate `n` uniform random points of dimension `dim` with data ranging from -scale to +scale.  
 755//    The `scale` may be a number, in which case the random data lies in a cube,
 756//    or a vector with dimension `dim`, in which case each dimension has its own scale.  
 757// Arguments:
 758//    n = number of points to generate. Default: 1
 759//    dim = dimension of the points. Default: 2
 760//    scale = the scale of the point coordinates. Default: 1
 761//    seed = an optional seed for the random generation.
 762function random_points(n, dim, scale=1, seed) =
 763    assert( is_int(n) && n>=0, "The number of points should be a non-negative integer.")
 764    assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
 765    assert( is_finite(scale) || is_vector(scale,dim), "The scale should be a number or a vector with length equal to d.")
 766    let( 
 767        rnds =   is_undef(seed) 
 768                ? rands(-1,1,n*dim)
 769                : rands(-1,1,n*dim, seed) )
 770    is_num(scale) 
 771    ? scale*[for(i=[0:1:n-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ]
 772    : [for(i=[0:1:n-1]) [for(j=[0:dim-1]) scale[j]*rnds[i*dim+j] ] ];
 773
 774
 775// Function: gaussian_rands()
 776// Usage:
 777//   arr = gaussian_rands([n],[mean], [cov], [seed]);
 778// Description:
 779//   Returns a random number or vector with a Gaussian/normal distribution.
 780// Arguments:
 781//   n = the number of points to return.  Default: 1
 782//   mean = The average of the random value (a number or vector).  Default: 0
 783//   cov = covariance matrix of the random numbers, or variance in the 1D case. Default: 1
 784//   seed = If given, sets the random number seed.
 785function gaussian_rands(n=1, mean=0, cov=1, seed=undef) =
 786    assert(is_num(mean) || is_vector(mean))
 787    let(
 788        dim = is_num(mean) ? 1 : len(mean)
 789    )
 790    assert((dim==1 && is_num(cov)) || is_matrix(cov,dim,dim),"mean and covariance matrix not compatible")
 791    assert(is_undef(seed) || is_finite(seed))
 792    let(
 793         nums = is_undef(seed)? rands(0,1,dim*n*2) : rands(0,1,dim*n*2,seed),
 794         rdata = [for (i = count(dim*n,0,2)) sqrt(-2*ln(nums[i]))*cos(360*nums[i+1])]
 795    )
 796    dim==1 ? add_scalar(sqrt(cov)*rdata,mean) :
 797    assert(is_matrix_symmetric(cov),"Supplied covariance matrix is not symmetric")
 798    let(
 799        L = cholesky(cov)
 800    )
 801    assert(is_def(L), "Supplied covariance matrix is not positive definite")
 802    move(mean,list_to_matrix(rdata,dim)*transpose(L));
 803
 804
 805// Function: exponential_rands()
 806// Usage:
 807//   arr = exponential_rands([n], [lambda], [seed])
 808// Description:
 809//   Returns random numbers with an exponential distribution with parameter lambda, and hence mean 1/lambda.  
 810// Arguments:
 811//   n = number of points to return.  Default: 1
 812//   lambda = distribution parameter.  The mean will be 1/lambda.  Default: 1
 813function exponential_rands(n=1, lambda=1, seed) =
 814    assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.")
 815    assert( is_num(lambda) && lambda>0, "The lambda parameter must be a positive number.")
 816    let(
 817         unif = is_def(seed) ? rands(0,1,n,seed=seed) : rands(0,1,n)
 818    )
 819    -(1/lambda) * [for(x=unif) x==1 ? 708.3964185322641 : ln(1-x)];  // Use ln(min_float) when x is 1
 820
 821// Function: spherical_random_points()
 822// Usage:
 823//    points = spherical_random_points([n], [radius], [seed]);
 824// See Also: random_polygon(), random_points()
 825// Topics: Random, Points
 826// Description:
 827//    Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
 828// Arguments:
 829//    n = number of points to generate. Default: 1
 830//    radius = the sphere radius. Default: 1
 831//    seed = an optional seed for the random generation.
 832
 833// See https://mathworld.wolfram.com/SpherePointPicking.html
 834function spherical_random_points(n=1, radius=1, seed) =
 835    assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.")
 836    assert( is_num(radius) && radius>0, "The radius should be a non-negative number.")
 837    let( theta = is_undef(seed) 
 838                ? rands(0,360,n)
 839                : rands(0,360,n, seed),
 840         cosphi = rands(-1,1,n))
 841    [for(i=[0:1:n-1]) let(
 842                          sin_phi=sqrt(1-cosphi[i]*cosphi[i])
 843                      )
 844                      radius*[sin_phi*cos(theta[i]),sin_phi*sin(theta[i]), cosphi[i]]];
 845
 846
 847
 848// Function: random_polygon()
 849// Usage:
 850//    points = random_polygon([n], [size], [seed]);
 851// See Also: random_points(), spherical_random_points()
 852// Topics: Random, Polygon
 853// Description:
 854//    Generate the `n` vertices of a random counter-clockwise simple 2d polygon 
 855//    inside a circle centered at the origin with radius `size`.
 856// Arguments:
 857//    n = number of vertices of the polygon. Default: 3
 858//    size = the radius of a circle centered at the origin containing the polygon. Default: 1
 859//    seed = an optional seed for the random generation.
 860function random_polygon(n=3,size=1, seed) =
 861    assert( is_int(n) && n>2, "Improper number of polygon vertices.")
 862    assert( is_num(size) && size>0, "Improper size.")
 863    let( 
 864        seed = is_undef(seed) ? rands(0,1,1)[0] : seed,
 865        cumm = cumsum(rands(0.1,10,n+1,seed)),
 866        angs = 360*cumm/cumm[n-1],
 867        rads = rands(.01,size,n,seed+cumm[0])
 868      )
 869    [for(i=count(n)) rads[i]*[cos(angs[i]), sin(angs[i])] ];
 870
 871
 872
 873// Section: Calculus
 874
 875// Function: deriv()
 876// Usage:
 877//   x = deriv(data, [h], [closed])
 878// Description:
 879//   Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
 880//   The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. 
 881//   If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
 882//   data[len(data)-1].  This function uses a symetric derivative approximation
 883//   for internal points, f'(t) = (f(t+h)-f(t-h))/2h.  For the endpoints (when closed=false) the algorithm
 884//   uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
 885//   .
 886//   If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
 887//   between data[i+1] and data[i], and the data values will be linearly resampled at each corner
 888//   to produce a uniform spacing for the derivative estimate.  At the endpoints a single point method
 889//   is used: f'(t) = (f(t+h)-f(t))/h.  
 890// Arguments:
 891//   data = the list of the elements to compute the derivative of.
 892//   h = the parametric sampling of the data.
 893//   closed = boolean to indicate if the data set should be wrapped around from the end to the start.
 894function deriv(data, h=1, closed=false) =
 895    assert( is_consistent(data) , "Input list is not consistent or not numerical.") 
 896    assert( len(data)>=2, "Input `data` should have at least 2 elements.") 
 897    assert( is_finite(h) || is_vector(h), "The sampling `h` must be a number or a list of numbers." )
 898    assert( is_num(h) || len(h) == len(data)-(closed?0:1),
 899            str("Vector valued `h` must have length ",len(data)-(closed?0:1)))
 900    is_vector(h) ? _deriv_nonuniform(data, h, closed=closed) :
 901    let( L = len(data) )
 902    closed
 903    ? [
 904        for(i=[0:1:L-1])
 905        (data[(i+1)%L]-data[(L+i-1)%L])/2/h
 906      ]
 907    : let(
 908        first = L<3 ? data[1]-data[0] : 
 909                3*(data[1]-data[0]) - (data[2]-data[1]),
 910        last = L<3 ? data[L-1]-data[L-2]:
 911               (data[L-3]-data[L-2])-3*(data[L-2]-data[L-1])
 912         ) 
 913      [
 914        first/2/h,
 915        for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h,
 916        last/2/h
 917      ];
 918
 919
 920function _dnu_calc(f1,fc,f2,h1,h2) =
 921    let(
 922        f1 = h2<h1 ? lerp(fc,f1,h2/h1) : f1 , 
 923        f2 = h1<h2 ? lerp(fc,f2,h1/h2) : f2
 924       )
 925    (f2-f1) / 2 / min(h1,h2);
 926
 927
 928function _deriv_nonuniform(data, h, closed) =
 929    let( L = len(data) )
 930    closed
 931    ? [for(i=[0:1:L-1])
 932          _dnu_calc(data[(L+i-1)%L], data[i], data[(i+1)%L], select(h,i-1), h[i]) ]
 933    : [
 934        (data[1]-data[0])/h[0],
 935        for(i=[1:1:L-2]) _dnu_calc(data[i-1],data[i],data[i+1], h[i-1],h[i]),
 936        (data[L-1]-data[L-2])/h[L-2]                            
 937      ];
 938
 939
 940// Function: deriv2()
 941// Usage:
 942//   x = deriv2(data, [h], [closed])
 943// Description:
 944//   Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued.
 945//   The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. 
 946//   If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
 947//   data[len(data)-1].  For internal points this function uses the approximation 
 948//   f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2.  For the endpoints (when closed=false),
 949//   when sufficient points are available, the method is either the four point expression
 950//   f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or 
 951//   f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
 952//   if five points are available.
 953// Arguments:
 954//   data = the list of the elements to compute the derivative of.
 955//   h = the constant parametric sampling of the data.
 956//   closed = boolean to indicate if the data set should be wrapped around from the end to the start.
 957function deriv2(data, h=1, closed=false) =
 958    assert( is_consistent(data) , "Input list is not consistent or not numerical.") 
 959    assert( is_finite(h), "The sampling `h` must be a number." )
 960    let( L = len(data) )
 961    assert( L>=3, "Input list has less than 3 elements.") 
 962    closed
 963    ? [
 964        for(i=[0:1:L-1])
 965        (data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h
 966      ]
 967    :
 968    let(
 969        first = 
 970            L==3? data[0] - 2*data[1] + data[2] :
 971            L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] :
 972            (35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12, 
 973        last = 
 974            L==3? data[L-1] - 2*data[L-2] + data[L-3] :
 975            L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] :
 976            (35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12
 977    ) [
 978        first/h/h,
 979        for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h,
 980        last/h/h
 981    ];
 982
 983
 984// Function: deriv3()
 985// Usage:
 986//   x = deriv3(data, [h], [closed])
 987// Description:
 988//   Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
 989//   The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. 
 990//   If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
 991//   data[len(data)-1].  This function uses a five point derivative estimate, so the input data must include 
 992//   at least five points:
 993//   f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3.  At the first and second points from the end
 994//   the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
 995//   f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
 996// Arguments:
 997//   data = the list of the elements to compute the derivative of.
 998//   h = the constant parametric sampling of the data.
 999//   closed = boolean to indicate if the data set should be wrapped around from the end to the start.
1000function deriv3(data, h=1, closed=false) =
1001    assert( is_consistent(data) , "Input list is not consistent or not numerical.") 
1002    assert( len(data)>=5, "Input list has less than 5 elements.") 
1003    assert( is_finite(h), "The sampling `h` must be a number." )
1004    let(
1005        L = len(data),
1006        h3 = h*h*h
1007    )
1008    closed? [
1009        for(i=[0:1:L-1])
1010        (-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3
1011    ] :
1012    let(
1013        first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2,
1014        second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2,
1015        last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2,
1016        prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2
1017    ) [
1018        first/h3,
1019        second/h3,
1020        for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3,
1021        prelast/h3,
1022        last/h3
1023    ];
1024
1025
1026// Section: Complex Numbers
1027
1028
1029// Function: complex()
1030// Usage:
1031//   z = complex(list)
1032// Description:
1033//   Converts a real valued number, vector or matrix into its complex analog
1034//   by replacing all entries with a 2-vector that has zero imaginary part.
1035function complex(list) =
1036   is_num(list) ? [list,0] :
1037   [for(entry=list) is_num(entry) ? [entry,0] : complex(entry)];
1038
1039
1040// Function: c_mul()
1041// Usage:
1042//   c = c_mul(z1,z2)
1043// Description:
1044//   Multiplies two complex numbers, vectors or matrices, where complex numbers
1045//   or entries are represented as vectors: [REAL, IMAGINARY].  Note that all
1046//   entries in both arguments must be complex.  
1047// Arguments:
1048//   z1 = First complex number, vector or matrix
1049//   z2 = Second complex number, vector or matrix
1050function c_mul(z1,z2) =
1051    is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) :
1052    _combine_complex(_c_mul(_split_complex(z1), _split_complex(z2)));
1053
1054
1055function _split_complex(data) =
1056    is_vector(data,2) ? data
1057    : is_num(data[0][0]) ? [data*[1,0], data*[0,1]]
1058    : [
1059      [for(vec=data) vec * [1,0]],
1060      [for(vec=data) vec * [0,1]]
1061     ];
1062
1063
1064function _combine_complex(data) =
1065    is_vector(data,2) ? data
1066    : is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]]
1067    : [for(i=[0:1:len(data[0])-1])
1068          [for(j=[0:1:len(data[0][0])-1])  
1069              [data[0][i][j], data[1][i][j]]]];
1070
1071
1072function _c_mul(z1,z2) = 
1073    [ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
1074
1075
1076// Function: c_div()
1077// Usage:
1078//   x = c_div(z1,z2)
1079// Description:
1080//   Divides two complex numbers represented by 2D vectors.  
1081//   Returns a complex number as a 2D vector [REAL, IMAGINARY].
1082// Arguments:
1083//   z1 = First complex number, given as a 2D vector [REAL, IMAGINARY]
1084//   z2 = Second complex number, given as a 2D vector [REAL, IMAGINARY]
1085function c_div(z1,z2) = 
1086    assert( is_vector(z1,2) && is_vector(z2), "Complex numbers should be represented by 2D vectors." )
1087    assert( !approx(z2,0), "The divisor `z2` cannot be zero." ) 
1088    let(den = z2.x*z2.x + z2.y*z2.y)
1089    [(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x - z1.x*z2.y)/den];
1090
1091
1092// Function: c_conj()
1093// Usage:
1094//   w = c_conj(z)
1095// Description:
1096//   Computes the complex conjugate of the input, which can be a complex number,
1097//   complex vector or complex matrix.  
1098function c_conj(z) =
1099   is_vector(z,2) ? [z.x,-z.y] :
1100   [for(entry=z) c_conj(entry)];
1101
1102
1103// Function: c_real()
1104// Usage:
1105//   x = c_real(z)
1106// Description:
1107//   Returns real part of a complex number, vector or matrix.
1108function c_real(z) = 
1109     is_vector(z,2) ? z.x
1110   : is_num(z[0][0]) ? z*[1,0]
1111   : [for(vec=z) vec * [1,0]];
1112
1113
1114// Function: c_imag()
1115// Usage:
1116//   x = c_imag(z)
1117// Description:
1118//   Returns imaginary part of a complex number, vector or matrix.
1119function c_imag(z) = 
1120     is_vector(z,2) ? z.y
1121   : is_num(z[0][0]) ? z*[0,1]
1122   : [for(vec=z) vec * [0,1]];
1123
1124
1125// Function: c_ident()
1126// Usage:
1127//   I = c_ident(n)
1128// Description:
1129//   Produce an n by n complex identity matrix
1130function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,0]]];
1131
1132
1133// Function: c_norm()
1134// Usage:
1135//   n = c_norm(z)
1136// Description:
1137//   Compute the norm of a complex number or vector. 
1138function c_norm(z) = norm_fro(z);
1139
1140
1141// Section: Polynomials
1142
1143// Function: quadratic_roots()
1144// Usage:
1145//    roots = quadratic_roots(a, b, c, [real])
1146// Description:
1147//    Computes roots of the quadratic equation a*x^2+b*x+c==0, where the
1148//    coefficients are real numbers.  If real is true then returns only the
1149//    real roots.  Otherwise returns a pair of complex values.  This method
1150//    may be more reliable than the general root finder at distinguishing
1151//    real roots from complex roots.  
1152//    Algorithm from: https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
1153function quadratic_roots(a,b,c,real=false) =
1154  real ? [for(root = quadratic_roots(a,b,c,real=false)) if (root.y==0) root.x]
1155  :
1156  is_undef(b) && is_undef(c) && is_vector(a,3) ? quadratic_roots(a[0],a[1],a[2]) :
1157  assert(is_num(a) && is_num(b) && is_num(c))
1158  assert(a!=0 || b!=0 || c!=0, "Quadratic must have a nonzero coefficient")
1159  a==0 && b==0 ? [] :     // No solutions
1160  a==0 ? [[-c/b,0]] : 
1161  let(
1162      descrim = b*b-4*a*c,
1163      sqrt_des = sqrt(abs(descrim))
1164  )
1165  descrim < 0 ?             // Complex case
1166     [[-b, sqrt_des],
1167      [-b, -sqrt_des]]/2/a :
1168  b<0 ?                     // b positive
1169     [[2*c/(-b+sqrt_des),0],
1170      [(-b+sqrt_des)/a/2,0]]
1171      :                     // b negative
1172     [[(-b-sqrt_des)/2/a, 0],
1173      [2*c/(-b-sqrt_des),0]];
1174
1175
1176// Function: polynomial() 
1177// Usage:
1178//   x = polynomial(p, z)
1179// Description:
1180//   Evaluates specified real polynomial, p, at the complex or real input value, z.
1181//   The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
1182//   where a_n is the z^n coefficient.  Polynomial coefficients are real.
1183//   The result is a number if `z` is a number and a complex number otherwise.
1184function polynomial(p,z,k,total) =
1185  is_undef(k)
1186  ? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
1187    assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
1188    polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
1189  : k==len(p) ? total
1190  : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]);
1191
1192
1193// Function: poly_mult()
1194// Usage:
1195//   x = polymult(p,q)
1196//   x = polymult([p1,p2,p3,...])
1197// Description:
1198//   Given a list of polynomials represented as real algebraic coefficient lists, with the highest degree coefficient first, 
1199//   computes the coefficient list of the product polynomial.  
1200function poly_mult(p,q) = 
1201  is_undef(q) ?
1202    len(p)==2 
1203        ? poly_mult(p[0],p[1]) 
1204    : poly_mult(p[0], poly_mult(list_tail(p)))
1205  :
1206  assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
1207    p*p==0 || q*q==0
1208    ? [0]
1209    : _poly_trim(convolve(p,q));
1210
1211    
1212// Function: poly_div()
1213// Usage:
1214//    [quotient,remainder] = poly_div(n,d)
1215// Description:
1216//    Computes division of the numerator polynomial by the denominator polynomial and returns
1217//    a list of two polynomials, [quotient, remainder].  If the division has no remainder then
1218//    the zero polynomial [0] is returned for the remainder.  Similarly if the quotient is zero
1219//    the returned quotient will be [0].  
1220function poly_div(n,d) =
1221    assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
1222    let( d = _poly_trim(d), 
1223         n = _poly_trim(n) )
1224    assert( d!=[0] , "Denominator cannot be a zero polynomial." )
1225    n==[0]
1226    ? [[0],[0]]
1227    : _poly_div(n,d,q=[]);
1228
1229function _poly_div(n,d,q) =
1230    len(n)<len(d) ? [q,_poly_trim(n)] : 
1231    let(
1232      t = n[0] / d[0], 
1233      newq = concat(q,[t]),
1234      newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
1235    )  
1236    _poly_div(newn,d,newq);
1237
1238
1239/// Internal Function: _poly_trim()
1240/// Usage:
1241///    _poly_trim(p, [eps])
1242/// Description:
1243///    Removes leading zero terms of a polynomial.  By default zeros must be exact,
1244///    or give epsilon for approximate zeros. Returns [0] for a zero polynomial.
1245function _poly_trim(p,eps=0) =
1246    let( nz = [for(i=[0:1:len(p)-1]) if ( !approx(p[i],0,eps)) i])
1247    len(nz)==0 ? [0] : list_tail(p,nz[0]);
1248
1249
1250// Function: poly_add()
1251// Usage:
1252//    sum = poly_add(p,q)
1253// Description:
1254//    Computes the sum of two polynomials.  
1255function poly_add(p,q) = 
1256    assert( is_vector(p) && is_vector(q), "Invalid input polynomial(s)." )
1257    let(  plen = len(p),
1258          qlen = len(q),
1259          long = plen>qlen ? p : q,
1260          short = plen>qlen ? q : p
1261       )
1262     _poly_trim(long + concat(repeat(0,len(long)-len(short)),short));
1263
1264
1265// Function: poly_roots()
1266// Usage:
1267//   roots = poly_roots(p, [tol]);
1268// Description:
1269//   Returns all complex roots of the specified real polynomial p.
1270//   The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
1271//   where a_n is the z^n coefficient.  The tol parameter gives
1272//   the stopping tolerance for the iteration.  The polynomial
1273//   must have at least one non-zero coefficient.  Convergence is poor
1274//   if the polynomial has any repeated roots other than zero.  
1275// Arguments:
1276//   p = polynomial coefficients with higest power coefficient first
1277//   tol = tolerance for iteration.  Default: 1e-14
1278
1279// Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method
1280//
1281// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
1282// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
1283function poly_roots(p,tol=1e-14,error_bound=false) =
1284    assert( is_vector(p), "Invalid polynomial." )
1285    let( p = _poly_trim(p,eps=0) )
1286    assert( p!=[0], "Input polynomial cannot be zero." )
1287    p[len(p)-1] == 0 ?                                       // Strip trailing zero coefficients
1288        let( solutions = poly_roots(list_head(p),tol=tol, error_bound=error_bound))
1289        (error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]]
1290                    : [[0,0], each solutions]) :
1291    len(p)==1 ? (error_bound ? [[],[]] : []) :               // Nonzero constant case has no solutions
1292    len(p)==2 ? let( solution = [[-p[1]/p[0],0]])            // Linear case needs special handling
1293                (error_bound ? [solution,[0]] : solution)
1294    : 
1295    let(
1296        n = len(p)-1,   // polynomial degree
1297        pderiv = [for(i=[0:n-1]) p[i]*(n-i)],
1298           
1299        s = [for(i=[0:1:n]) abs(p[i])*(4*(n-i)+1)],  // Error bound polynomial from Bini
1300
1301        // Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf
1302        beta = -p[1]/p[0]/n,
1303        r = 1+pow(abs(polynomial(p,beta)/p[0]),1/n),
1304        init = [for(i=[0:1:n-1])                // Initial guess for roots       
1305                 let(angle = 360*i/n+270/n/PI)
1306                 [beta,0]+r*[cos(angle),sin(angle)]
1307               ],
1308        roots = _poly_roots(p,pderiv,s,init,tol=tol),
1309        error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) /
1310                                  abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0
1311      )
1312      error_bound ? [roots, error] : roots;
1313
1314// Internal function
1315// p = polynomial
1316// pderiv = derivative polynomial of p
1317// z = current guess for the roots
1318// tol = root tolerance
1319// i=iteration counter
1320function _poly_roots(p, pderiv, s, z, tol, i=0) =
1321    assert(i<45, str("Polyroot exceeded iteration limit.  Current solution:", z))
1322    let(
1323        n = len(z),
1324        svals = [for(zk=z) tol*polynomial(s,norm(zk))],
1325        p_of_z = [for(zk=z) polynomial(p,zk)],
1326        done = [for(k=[0:n-1]) norm(p_of_z[k])<=svals[k]],
1327        newton = [for(k=[0:n-1]) c_div(p_of_z[k], polynomial(pderiv,z[k]))],
1328        zdiff = [for(k=[0:n-1]) sum([for(j=[0:n-1]) if (j!=k) c_div([1,0], z[k]-z[j])])],
1329        w = [for(k=[0:n-1]) done[k] ? [0,0] : c_div( newton[k],
1330                                                     [1,0] - c_mul(newton[k], zdiff[k]))]
1331    )
1332    all(done) ? z : _poly_roots(p,pderiv,s,z-w,tol,i+1);
1333
1334
1335// Function: real_roots()
1336// Usage:
1337//   roots = real_roots(p, [eps], [tol])
1338// Description:
1339//   Returns the real roots of the specified real polynomial p.
1340//   The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
1341//   where a_n is the x^n coefficient.  This function works by
1342//   computing the complex roots and returning those roots where
1343//   the imaginary part is closed to zero.  By default it uses a computed
1344//   error bound from the polynomial solver to decide whether imaginary
1345//   parts are zero.  You can specify eps, in which case the test is
1346//   z.y/(1+norm(z)) < eps.  Because
1347//   of poor convergence and higher error for repeated roots, such roots may
1348//   be missed by the algorithm because their imaginary part is large.
1349// Arguments:
1350//   p = polynomial to solve as coefficient list, highest power term first
1351//   eps = used to determine whether imaginary parts of roots are zero
1352//   tol = tolerance for the complex polynomial root finder
1353
1354//   The algorithm is based on Brent's method and is a combination of
1355//   bisection and inverse quadratic approximation, where bisection occurs
1356//   at every step, with refinement using inverse quadratic approximation
1357//   only when that approximation gives a good result.  The detail
1358//   of how to decide when to use the quadratic came from an article
1359//   by Crenshaw on "The World's Best Root Finder".
1360//   https://www.embedded.com/worlds-best-root-finder/
1361function real_roots(p,eps=undef,tol=1e-14) =
1362    assert( is_vector(p), "Invalid polynomial." )
1363    let( p = _poly_trim(p,eps=0) )
1364    assert( p!=[0], "Input polynomial cannot be zero." )
1365    let( 
1366       roots_err = poly_roots(p,error_bound=true),
1367       roots = roots_err[0],
1368       err = roots_err[1]
1369    )
1370    is_def(eps) 
1371    ? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
1372    : [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
1373
1374
1375// Section: Operations on Functions
1376
1377// Function: root_find()
1378// Usage:
1379//    x = root_find(f, x0, x1, [tol])
1380// Description:
1381//    Find a root of the continuous function f where the sign of f(x0) is different
1382//    from the sign of f(x1).  The function f is a function literal accepting one
1383//    argument.  You must have a version of OpenSCAD that supports function literals
1384//    (2021.01 or newer).  The tolerance (tol) specifies the accuracy of the solution:
1385//    abs(f(x)) < tol * yrange, where yrange is the range of observed function values.
1386//    This function can only find roots that cross the x axis:  it cannot find the
1387//    the root of x^2.
1388// Arguments:
1389//    f = function literal for a scalar-valued single variable function
1390//    x0 = endpoint of interval to search for root
1391//    x1 = second endpoint of interval to search for root
1392//    tol = tolerance for solution.  Default: 1e-15
1393function root_find(f,x0,x1,tol=1e-15) =
1394   let(
1395        y0 = f(x0),
1396        y1 = f(x1),
1397        yrange = y0<y1 ? [y0,y1] : [y1,y0]
1398   )
1399   // Check endpoints
1400   y0==0 || _rfcheck(x0, y0,yrange,tol) ? x0 :
1401   y1==0 || _rfcheck(x1, y1,yrange,tol) ? x1 :
1402   assert(y0*y1<0, "Sign of function must be different at the interval endpoints")
1403   _rootfind(f,[x0,x1],[y0,y1],yrange,tol);
1404
1405function _rfcheck(x,y,range,tol) =
1406   assert(is_finite(y), str("Function not finite at ",x))
1407   abs(y) < tol*(range[1]-range[0]);
1408
1409// xpts and ypts are arrays whose first two entries contain the
1410// interval bracketing the root.  Extra entries are ignored.
1411// yrange is the total observed range of y values (used for the
1412// tolerance test).  
1413function _rootfind(f, xpts, ypts, yrange, tol, i=0) =
1414    assert(i<100, "root_find did not converge to a solution")
1415    let(
1416         xmid = (xpts[0]+xpts[1])/2,
1417         ymid = f(xmid),
1418         yrange = [min(ymid, yrange[0]), max(ymid, yrange[1])]
1419    )
1420    _rfcheck(xmid, ymid, yrange, tol) ? xmid :
1421    let(
1422         // Force root to be between x0 and midpoint
1423         y = ymid * ypts[0] < 0 ? [ypts[0], ymid, ypts[1]]
1424                                : [ypts[1], ymid, ypts[0]],
1425         x = ymid * ypts[0] < 0 ? [xpts[0], xmid, xpts[1]]
1426                                : [xpts[1], xmid, xpts[0]],
1427         v = y[2]*(y[2]-y[0]) - 2*y[1]*(y[1]-y[0])
1428    )
1429    v <= 0 ? _rootfind(f,x,y,yrange,tol,i+1)  // Root is between first two points, extra 3rd point doesn't hurt
1430    :
1431    let(  // Do quadratic approximation
1432        B = (x[1]-x[0]) / (y[1]-y[0]),
1433        C = y*[-1,2,-1] / (y[2]-y[1]) / (y[2]-y[0]),
1434        newx = x[0] - B * y[0] *(1-C*y[1]),
1435        newy = f(newx),
1436        new_yrange = [min(yrange[0],newy), max(yrange[1], newy)],
1437        // select interval that contains the root by checking sign
1438        yinterval = newy*y[0] < 0 ? [y[0],newy] : [newy,y[1]],
1439        xinterval = newy*y[0] < 0 ? [x[0],newx] : [newx,x[1]]
1440     )
1441     _rfcheck(newx, newy, new_yrange, tol)
1442        ? newx
1443        : _rootfind(f, xinterval, yinterval, new_yrange, tol, i+1);
1444
1445
1446
1447// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap