1//////////////////////////////////////////////////////////////////////
  2// LibFile: vectors.scad
  3//   This file provides some mathematical operations that apply to each
  4//   entry in a vector.  It provides normalization and angle computation, and
  5//   it provides functions for searching lists of vectors for matches to
  6//   a given vector.  
  7// Includes:
  8//   include <BOSL2/std.scad>
  9// FileGroup: Math
 10// FileSummary: Vector arithmetic, angle, and searching.
 11// FileFootnotes: STD=Included in std.scad
 12//////////////////////////////////////////////////////////////////////
 13
 14
 15// Section: Vector Testing
 16
 17
 18// Function: is_vector()
 19// Synopsis: Returns true if the given value is a vector.
 20// Topics: Vectors, Math
 21// See Also: is_matrix(), is_path(), is_region()
 22// Usage:
 23//   bool = is_vector(v, [length], [zero=], [all_nonzero=], [eps=]);
 24// Description:
 25//   Returns true if v is a list of finite numbers.
 26// Arguments:
 27//   v = The value to test to see if it is a vector.
 28//   length = If given, make sure the vector is `length` items long.
 29//   ---
 30//   zero = If false, require that the `norm()` of the vector is not approximately zero.  If true, require the `norm()` of the vector to be approximately zero.  Default: `undef` (don't check vector `norm()`.)
 31//   all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero.  Default: `false`
 32//   eps = The minimum vector length that is considered non-zero.  Default: `EPSILON` (`1e-9`)
 33// Example:
 34//   is_vector(4);                          // Returns false
 35//   is_vector([4,true,false]);             // Returns false
 36//   is_vector([3,4,INF,5]);                // Returns false
 37//   is_vector([3,4,5,6]);                  // Returns true
 38//   is_vector([3,4,undef,5]);              // Returns false
 39//   is_vector([3,4,5],3);                  // Returns true
 40//   is_vector([3,4,5],4);                  // Returns true
 41//   is_vector([]);                         // Returns false
 42//   is_vector([0,4,0],3,zero=false);       // Returns true
 43//   is_vector([0,0,0],zero=false);         // Returns false
 44//   is_vector([0,0,1e-12],zero=false);     // Returns false
 45//   is_vector([0,1,0],all_nonzero=false);  // Returns false
 46//   is_vector([1,1,1],all_nonzero=false);  // Returns true
 47//   is_vector([],zero=false);              // Returns false
 48function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
 49    is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_finite(vi)) 0] 
 50    && (is_undef(length) || len(v)==length)
 51    && (is_undef(zero) || ((norm(v) >= eps) == !zero))
 52    && (!all_nonzero || all_nonzero(v)) ;
 53
 54
 55
 56// Section: Scalar operations on vectors
 57
 58// Function: add_scalar()
 59// Synopsis: Adds a scalar value to every item in a vector.
 60// Topics: Vectors, Math
 61// See Also: add_scalar(), v_mul(), v_div()
 62// Usage:  
 63//   v_new = add_scalar(v, s);
 64// Description:
 65//   Given a vector and a scalar, returns the vector with the scalar added to each item in it.
 66// Arguments:
 67//   v = The initial array.
 68//   s = A scalar value to add to every item in the array.
 69// Example:
 70//   a = add_scalar([1,2,3],3);            // Returns: [4,5,6]
 71function add_scalar(v,s) =
 72    assert(is_vector(v), "Input v must be a vector")
 73    assert(is_finite(s), "Input s must be a finite scalar")
 74    [for(entry=v) entry+s];
 75
 76
 77// Function: v_mul()
 78// Synopsis: Returns the element-wise multiplication of two equal-length vectors.
 79// Topics: Vectors, Math
 80// See Also: add_scalar(), v_mul(), v_div()
 81// Usage:
 82//   v3 = v_mul(v1, v2);
 83// Description:
 84//   Element-wise multiplication.  Multiplies each element of `v1` by the corresponding element of `v2`.
 85//   Both `v1` and `v2` must be the same length.  Returns a vector of the products.  Note that
 86//   the items in `v1` and `v2` can be anything that OpenSCAD will multiply.  
 87// Arguments:
 88//   v1 = The first vector.
 89//   v2 = The second vector.
 90// Example:
 91//   v_mul([3,4,5], [8,7,6]);  // Returns [24, 28, 30]
 92function v_mul(v1, v2) = 
 93    assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
 94    [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
 95    
 96
 97// Function: v_div()
 98// Synopsis: Returns the element-wise division of two equal-length vectors.
 99// Topics: Vectors, Math
100// See Also: add_scalar(), v_mul(), v_div()
101// Usage:
102//   v3 = v_div(v1, v2);
103// Description:
104//   Element-wise vector division.  Divides each element of vector `v1` by
105//   the corresponding element of vector `v2`.  Returns a vector of the quotients.
106// Arguments:
107//   v1 = The first vector.
108//   v2 = The second vector.
109// Example:
110//   v_div([24,28,30], [8,7,6]);  // Returns [3, 4, 5]
111function v_div(v1, v2) = 
112    assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
113    [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
114
115
116// Function: v_abs()
117// Synopsis: Returns the absolute values of the given vector.
118// Topics: Vectors, Math
119// See Also: v_abs(), v_floor(), v_ceil()
120// Usage:
121//   v2 = v_abs(v);
122// Description: Returns a vector of the absolute value of each element of vector `v`.
123// Arguments:
124//   v = The vector to get the absolute values of.
125// Example:
126//   v_abs([-1,3,-9]);  // Returns: [1,3,9]
127function v_abs(v) =
128    assert( is_vector(v), "Invalid vector" ) 
129    [for (x=v) abs(x)];
130
131
132// Function: v_floor()
133// Synopsis: Returns the values of the given vector, rounded down.
134// Topics: Vectors, Math
135// See Also: v_abs(), v_floor(), v_ceil()
136// Usage:
137//   v2 = v_floor(v);
138// Description:
139//   Returns the given vector after performing a `floor()` on all items.
140function v_floor(v) =
141    assert( is_vector(v), "Invalid vector" ) 
142    [for (x=v) floor(x)];
143
144
145// Function: v_ceil()
146// Synopsis: Returns the values of the given vector, rounded up.
147// Topics: Vectors, Math
148// See Also: v_abs(), v_floor(), v_ceil()
149// Usage:
150//   v2 = v_ceil(v);
151// Description:
152//   Returns the given vector after performing a `ceil()` on all items.
153function v_ceil(v) =
154    assert( is_vector(v), "Invalid vector" ) 
155    [for (x=v) ceil(x)];
156
157
158// Function: v_lookup()
159// Synopsis: Like `lookup()`, but it can interpolate between vector results.
160// Topics: Vectors, Math
161// See Also: v_abs(), v_floor(), v_ceil()
162// Usage:
163//   v2 = v_lookup(x, v);
164// Description:
165//   Works just like the built-in function [`lookup()`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Mathematical_Functions#lookup), except that it can also interpolate between vector result values of the same length.
166// Arguments:
167//   x = The scalar value to look up.
168//   v = A list of [KEY,VAL] pairs. KEYs are scalars.  VALs should either all be scalar, or all be vectors of the same length.
169// Example:
170//   x = v_lookup(4.5, [[4, [3,4,5]], [5, [5,6,7]]]);  // Returns: [4,5,6]
171function v_lookup(x, v) =
172    is_num(v[0][1])? lookup(x,v) :
173    let(
174        i = lookup(x, [for (i=idx(v)) [v[i].x,i]]),
175        vlo = v[floor(i)],
176        vhi = v[ceil(i)],
177        lo = vlo[1],
178        hi = vhi[1]
179    )
180    assert(is_vector(lo) && is_vector(hi),
181        "Result values must all be numbers, or all be vectors.")
182    assert(len(lo) == len(hi), "Vector result values must be the same length")
183    vlo.x == vhi.x? vlo[1] :
184    let( u = (x - vlo.x) / (vhi.x - vlo.x) )
185    lerp(lo,hi,u);
186
187
188// Section: Vector Properties
189
190
191// Function: unit()
192// Synopsis: Returns the unit length of a given vector.
193// Topics: Vectors, Math
194// See Also: v_abs(), v_floor(), v_ceil()
195// Usage:
196//   v = unit(v, [error]);
197// Description:
198//   Returns the unit length normalized version of vector v.  If passed a zero-length vector,
199//   asserts an error unless `error` is given, in which case the value of `error` is returned.
200// Arguments:
201//   v = The vector to normalize.
202//   error = If given, and input is a zero-length vector, this value is returned.  Default: Assert error on zero-length vector.
203// Example:
204//   v1 = unit([10,0,0]);   // Returns: [1,0,0]
205//   v2 = unit([0,10,0]);   // Returns: [0,1,0]
206//   v3 = unit([0,0,10]);   // Returns: [0,0,1]
207//   v4 = unit([0,-10,0]);  // Returns: [0,-1,0]
208//   v5 = unit([0,0,0],[1,2,3]);    // Returns: [1,2,3]
209//   v6 = unit([0,0,0]);    // Asserts an error.
210function unit(v, error=[[["ASSERT"]]]) =
211    assert(is_vector(v), "Invalid vector")
212    norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Cannot normalize a zero vector") : error) :
213    v/norm(v);
214
215
216// Function: v_theta()
217// Synopsis: Returns the angle counter-clockwise from X+ on the XY plane.
218// Topics: Vectors, Math
219// See Also: unit()
220// Usage:
221//   theta = v_theta([X,Y]);
222// Description:
223//   Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
224function v_theta(v) =
225    assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
226    atan2(v.y,v.x);
227
228
229
230// Function: vector_angle()
231// Synopsis: Returns the minor angle between two vectors.
232// Topics: Vectors, Math
233// See Also: unit(), v_theta()
234// Usage:
235//   ang = vector_angle(v1,v2);
236//   ang = vector_angle([v1,v2]);
237//   ang = vector_angle(PT1,PT2,PT3);
238//   ang = vector_angle([PT1,PT2,PT3]);
239// Description:
240//   If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
241//   If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
242//   If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
243//   If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
244// Arguments:
245//   v1 = First vector or point.
246//   v2 = Second vector or point.
247//   v3 = Third point in three point mode.
248// Example:
249//   ang1 = vector_angle(UP,LEFT);     // Returns: 90
250//   ang2 = vector_angle(RIGHT,LEFT);  // Returns: 180
251//   ang3 = vector_angle(UP+RIGHT,RIGHT);  // Returns: 45
252//   ang4 = vector_angle([10,10], [0,0], [10,-10]);  // Returns: 90
253//   ang5 = vector_angle([10,0,10], [0,0,0], [-10,10,0]);  // Returns: 120
254//   ang6 = vector_angle([[10,0,10], [0,0,0], [-10,10,0]]);  // Returns: 120
255function vector_angle(v1,v2,v3) =
256    assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
257            || is_consistent([v1,v2,v3]) ,
258            "Bad arguments.")
259    assert( is_vector(v1) || is_consistent(v1), "Bad arguments.") 
260    let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
261                ! is_undef(v2) ? [v1,v2] :
262                len(v1) == 3   ? [v1[0]-v1[1], v1[2]-v1[1]] 
263                               : v1
264    )
265    assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
266    let(
267        norm0 = norm(vecs[0]),
268        norm1 = norm(vecs[1])
269    )
270    assert(norm0>0 && norm1>0, "Zero length vector.")
271    // NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
272    acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
273    
274
275// Function: vector_axis()
276// Synopsis: Returns the perpendicular axis between two vectors.
277// Topics: Vectors, Math
278// See Also: unit(), v_theta(), vector_angle()
279// Usage:
280//   axis = vector_axis(v1,v2);
281//   axis = vector_axis([v1,v2]);
282//   axis = vector_axis(PT1,PT2,PT3);
283//   axis = vector_axis([PT1,PT2,PT3]);
284// Description:
285//   If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
286//   If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
287//   If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
288//   If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
289// Arguments:
290//   v1 = First vector or point.
291//   v2 = Second vector or point.
292//   v3 = Third point in three point mode.
293// Example:
294//   axis1 = vector_axis(UP,LEFT);     // Returns: [0,-1,0] (FWD)
295//   axis2 = vector_axis(RIGHT,LEFT);  // Returns: [0,-1,0] (FWD)
296//   axis3 = vector_axis(UP+RIGHT,RIGHT);  // Returns: [0,1,0] (BACK)
297//   axis4 = vector_axis([10,10], [0,0], [10,-10]);  // Returns: [0,0,-1] (DOWN)
298//   axis5 = vector_axis([10,0,10], [0,0,0], [-10,10,0]);  // Returns: [-0.57735, -0.57735, 0.57735]
299//   axis6 = vector_axis([[10,0,10], [0,0,0], [-10,10,0]]);  // Returns: [-0.57735, -0.57735, 0.57735]
300function vector_axis(v1,v2=undef,v3=undef) =
301    is_vector(v3)
302    ?   assert(is_consistent([v3,v2,v1]), "Bad arguments.")
303        vector_axis(v1-v2, v3-v2)
304    :   assert( is_undef(v3), "Bad arguments.")
305        is_undef(v2)
306        ?   assert( is_list(v1), "Bad arguments.")
307            len(v1) == 2 
308            ?   vector_axis(v1[0],v1[1]) 
309            :   vector_axis(v1[0],v1[1],v1[2])
310        :   assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
311                    , "Bad arguments.")  
312            let(
313              eps = 1e-6,
314              w1 = point3d(v1/norm(v1)),
315              w2 = point3d(v2/norm(v2)),
316              w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2 
317                   : (norm(v_abs(w2)-UP) > eps)? UP 
318                   : RIGHT
319            ) unit(cross(w1,w3));
320
321
322// Function: vector_bisect()
323// Synopsis: Returns the vector that bisects two vectors.
324// Topics: Vectors, Math
325// See Also: unit(), v_theta(), vector_angle(), vector_axis()
326// Usage:
327//   newv = vector_bisect(v1,v2);
328// Description:
329//   Returns a unit vector that exactly bisects the minor angle between two given vectors.
330//   If given two vectors that are directly opposed, returns `undef`.
331function vector_bisect(v1,v2) =
332    assert(is_vector(v1))
333    assert(is_vector(v2))
334    assert(!approx(norm(v1),0), "Zero length vector.")
335    assert(!approx(norm(v2),0), "Zero length vector.")
336    assert(len(v1)==len(v2), "Vectors are of different sizes.")
337    let( v1 = unit(v1), v2 = unit(v2) )
338    approx(v1,-v2)? undef :
339    let(
340        axis = vector_axis(v1,v2),
341        ang = vector_angle(v1,v2),
342        v3 = unit(rot(ang/2, v=axis, p=v1))
343    ) v3;
344
345
346
347// Section: Vector Searching
348
349
350// Function: pointlist_bounds()
351// Synopsis: Returns the min and max bounding coordinates for the given list of points.
352// Topics: Geometry, Bounding Boxes, Bounds
353// See Also: closest_point()
354// Usage:
355//   pt_pair = pointlist_bounds(pts);
356// Description:
357//   Finds the bounds containing all the points in `pts` which can be a list of points in any dimension.
358//   Returns a list of two items: a list of the minimums and a list of the maximums.  For example, with
359//   3d points `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
360// Arguments:
361//   pts = List of points.
362function pointlist_bounds(pts) =
363    assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
364    let(
365        select = ident(len(pts[0])),
366        spread = [
367            for(i=[0:len(pts[0])-1])
368            let( spreadi = pts*select[i] )
369            [ min(spreadi), max(spreadi) ]
370        ]
371    ) transpose(spread);
372
373
374
375// Function: closest_point()
376// Synopsis: Finds the closest point in a list of points.
377// Topics: Geometry, Points, Distance
378// See Also: pointlist_bounds(), furthest_point(), closest_point()
379// Usage:
380//   index = closest_point(pt, points);
381// Description:
382//   Given a list of `points`, finds the index of the closest point to `pt`.
383// Arguments:
384//   pt = The point to find the closest point to.
385//   points = The list of points to search.
386function closest_point(pt, points) =
387    assert( is_vector(pt), "Invalid point." )
388    assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
389    min_index([for (p=points) norm(p-pt)]);
390
391
392// Function: furthest_point()
393// Synopsis: Finds the furthest point in a list of points.
394// Topics: Geometry, Points, Distance
395// See Also: pointlist_bounds(), furthest_point(), closest_point()
396// Usage:
397//   index = furthest_point(pt, points);
398// Description:
399//   Given a list of `points`, finds the index of the furthest point from `pt`.
400// Arguments:
401//   pt = The point to find the farthest point from.
402//   points = The list of points to search.
403function furthest_point(pt, points) =
404    assert( is_vector(pt), "Invalid point." )
405    assert(is_path(points,dim=len(pt)), "Invalid pointlist or incompatible dimensions." )
406    max_index([for (p=points) norm(p-pt)]);
407
408
409// Function: vector_search()
410// Synopsis: Finds points in a list that are close to a given point.
411// Topics: Search, Points, Closest
412// See Also: vector_search_tree(), vector_nearest()
413// Usage:
414//   indices = vector_search(query, r, target);
415// Description:
416//   Given a list of query points `query` and a `target` to search, 
417//   finds the points in `target` that match each query point. A match holds when the 
418//   distance between a point in `target` and a query point is less than or equal to `r`. 
419//   The returned list will have a list for each query point containing, in arbitrary 
420//   order, the indices of all points that match that query point. 
421//   The `target` may be a simple list of points or a search tree.
422//   When `target` is a large list of points, a search tree is constructed to 
423//   speed up the search with an order around O(log n) per query point. 
424//   For small point lists, a direct search is done dispensing a tree construction. 
425//   Alternatively, `target` may be a search tree built with `vector_search_tree()`.
426//   In that case, that tree is parsed looking for matches.
427//   An empty list of query points will return a empty output list.
428//   An empty list of target points will return a output list with an empty list for each query point.
429// Arguments:
430//   query = list of points to find matches for.
431//   r = the search radius.
432//   target = list of the points to search for matches or a search tree.
433// Example: A set of four queries to find points within 1 unit of the query.  The circles show the search region and all have radius 1.  
434//   $fn=32;
435//   k = 2000;
436//   points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
437//   queries = [for(i=[3,7],j=[3,7]) [i,j]];
438//   search_ind = vector_search(queries, points, 1);
439//   move_copies(points) circle(r=.08);
440//   for(i=idx(queries)){
441//       color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
442//       color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
443//   }
444// Example: when a series of searches with different radius are needed, its is faster to pre-compute the tree
445//   $fn=32;
446//   k = 2000;
447//   points = list_to_matrix(rands(0,10,k*2),2,seed=13333);
448//   queries1 = [for(i=[3,7]) [i,i]];
449//   queries2 = [for(i=[3,7]) [10-i,i]];
450//   r1 = 1;
451//   r2 = .7;
452//   search_tree = vector_search_tree(points);
453//   search_1 = vector_search(queries1, r1, search_tree);
454//   search_2 = vector_search(queries2, r2, search_tree);
455//   move_copies(points) circle(r=.08);
456//   for(i=idx(queries1)){
457//       color("blue")stroke(move(queries1[i],circle(r=r1)), closed=true, width=.08);
458//       color("red") move_copies(select(points, search_1[i])) circle(r=.08);
459//   }
460//   for(i=idx(queries2)){
461//       color("green")stroke(move(queries2[i],circle(r=r2)), closed=true, width=.08);
462//       color("red") move_copies(select(points, search_2[i])) circle(r=.08);
463//   }
464function vector_search(query, r, target) =
465    query==[] ? [] :
466    is_list(query) && target==[] ? is_vector(query) ? [] : [for(q=query) [] ] :
467    assert( is_finite(r) && r>=0, 
468            "The query radius should be a positive number." )
469    let(
470        tgpts  = is_matrix(target),   // target is a point list
471        tgtree = is_list(target)      // target is a tree
472                 && (len(target)==2)
473                 && is_matrix(target[0])
474                 && is_list(target[1])
475                 && (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
476    )
477    assert( tgpts || tgtree, 
478            "The target should be a list of points or a search tree compatible with the query." )
479    let( 
480        dim    = tgpts ? len(target[0]) : len(target[0][0]),
481        simple = is_vector(query, dim)
482        )
483    assert( simple || is_matrix(query,undef,dim), 
484            "The query points should be a list of points compatible with the target point list.")
485    tgpts 
486    ?   len(target)<=400
487        ?   simple ? [for(i=idx(target)) if(norm(target[i]-query)<=r) i ] :
488            [for(q=query) [for(i=idx(target)) if(norm(target[i]-q)<=r) i ] ]
489        :   let( tree = _bt_tree(target, count(len(target)), leafsize=25) )
490            simple ? _bt_search(query, r, target, tree) :
491            [for(q=query) _bt_search(q, r, target, tree)]
492    :   simple ?  _bt_search(query, r, target[0], target[1]) :
493        [for(q=query) _bt_search(q, r, target[0], target[1])];
494
495
496//Ball tree search
497function _bt_search(query, r, points, tree) = 
498    assert( is_list(tree) 
499            && (   ( len(tree)==1 && is_list(tree[0]) )
500                || ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ), 
501            "The tree is invalid.")
502    len(tree)==1 
503    ?   assert( tree[0]==[] || is_vector(tree[0]), "The tree is invalid." )
504        [for(i=tree[0]) if(norm(points[i]-query)<=r) i ]
505    :   norm(query-points[tree[0]]) > r+tree[1] ? [] :
506        concat( 
507            [ if(norm(query-points[tree[0]])<=r) tree[0] ],
508            _bt_search(query, r, points, tree[2]),
509            _bt_search(query, r, points, tree[3]) ) ;
510     
511
512// Function: vector_search_tree()
513// Synopsis: Makes a distance search tree for a list of points.
514// Topics: Search, Points, Closest
515// See Also: vector_nearest(), vector_search()
516// Usage:
517//    tree = vector_search_tree(points,leafsize);
518// Description:
519//    Construct a search tree for the given list of points to be used as input
520//    to the function `vector_search()`. The use of a tree speeds up the
521//    search process. The tree construction stops branching when 
522//    a tree node represents a number of points less or equal to `leafsize`.
523//    Search trees are ball trees. Constructing the
524//    tree should be O(n log n) and searches should be O(log n), though real life
525//    performance depends on how the data is distributed, and it will deteriorate
526//    for high data dimensions.  This data structure is useful when you will be
527//    performing many searches of the same data, so that the cost of constructing 
528//    the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
529//    For a small lists of points, the search with a tree may be more expensive
530//    than direct comparisons. The argument `treemin` sets the minimum length of 
531//    point set for which a tree search will be done by `vector_search`.
532//    For an empty list of points it returns an empty list.
533// Arguments:
534//    points = list of points to store in the search tree.
535//    leafsize = the size of the tree leaves. Default: 25
536//    treemin = the minimum size of the point list for which a tree search is done. Default: 400
537// Example: A set of four queries to find points within 1 unit of the query.  The circles show the search region and all have radius 1.  
538//   $fn=32;
539//   k = 2000;
540//   points = random_points(k, scale=10, dim=2,seed=13333);
541//   queries = [for(i=[3,7],j=[3,7]) [i,j]];
542//   search_tree = vector_search_tree(points);
543//   search_ind = vector_search(queries,1,search_tree);
544//   move_copies(points) circle(r=.08);
545//   for(i=idx(queries)){
546//       color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
547//       color("red")  move_copies(select(points, search_ind[i])) circle(r=.08);
548//   }
549function vector_search_tree(points, leafsize=25, treemin=400) =
550    points==[] ? [] :
551    assert( is_matrix(points), "The input list entries should be points." )
552    assert( is_int(leafsize) && leafsize>=1,
553            "The tree leaf size should be an integer greater than zero.")
554    len(points)<treemin ? points :
555    [ points, _bt_tree(points, count(len(points)), leafsize) ];
556
557
558//Ball tree construction
559function _bt_tree(points, ind, leafsize=25) =
560    len(ind)<=leafsize ? [ind] :
561    let( 
562        bounds = pointlist_bounds(select(points,ind)),
563        coord  = max_index(bounds[1]-bounds[0]), 
564        projc  = [for(i=ind) points[i][coord] ],
565        meanpr = mean(projc), 
566        pivot  = min_index([for(p=projc) abs(p-meanpr)]),
567        radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
568        Lind   = [for(i=idx(ind)) if(projc[i]<=meanpr && i!=pivot) ind[i] ],
569        Rind   = [for(i=idx(ind)) if(projc[i] >meanpr && i!=pivot) ind[i] ]
570      )
571    [ ind[pivot], radius, _bt_tree(points, Lind, leafsize), _bt_tree(points, Rind, leafsize) ];
572
573
574// Function: vector_nearest()
575// Synopsis: Finds the `k` nearest points in a list to a given point.
576// Topics: Search, Points, Closest
577// See Also: vector_search(), vector_search_tree()
578// Usage:
579//    indices = vector_nearest(query, k, target);
580// Description:
581//    Search `target` for the `k` points closest to point `query`.
582//    The input `target` is either a list of points to search or a search tree
583//    pre-computed by `vector_search_tree(). A list is returned containing the indices
584//    of the points found in sorted order, closest point first.  
585// Arguments:
586//    query = point to search for
587//    k = number of neighbors to return
588//    target = a list of points or a search tree to search in
589// Example:  Four queries to find the 15 nearest points.  The circles show the radius defined by the most distant query result.  Note they are different for each query.  
590//    $fn=32;
591//    k = 1000;
592//    points = list_to_matrix(rands(0,10,k*2,seed=13333),2);
593//    tree = vector_search_tree(points);
594//    queries = [for(i=[3,7],j=[3,7]) [i,j]];
595//    search_ind = [for(q=queries) vector_nearest(q, 15, tree)];
596//    move_copies(points) circle(r=.08);
597//    for(i=idx(queries)){
598//        circle = circle(r=norm(points[last(search_ind[i])]-queries[i]));
599//        color("red")  move_copies(select(points, search_ind[i])) circle(r=.08);
600//        color("blue") stroke(move(queries[i], circle), closed=true, width=.08);  
601//    }
602function vector_nearest(query, k, target) =
603    assert(is_int(k) && k>0)
604    assert(is_vector(query), "Query must be a vector.")
605    let(
606        tgpts  = is_matrix(target,undef,len(query)), // target is a point list
607        tgtree = is_list(target)      // target is a tree
608                 && (len(target)==2)
609                 && is_matrix(target[0],undef,len(query))
610                 && (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
611    )
612    assert( tgpts || tgtree, 
613            "The target should be a list of points or a search tree compatible with the query." )
614    assert((tgpts && (k<=len(target))) || (tgtree && (k<=len(target[0]))), 
615            "More results are requested than the number of points.")
616    tgpts
617    ?   let( tree = _bt_tree(target, count(len(target))) )
618        column(_bt_nearest( query, k, target,  tree),0)
619    :   column(_bt_nearest( query, k, target[0], target[1]),0);
620
621
622//Ball tree nearest
623function _bt_nearest(p, k, points, tree, answers=[]) =
624    assert( is_list(tree) 
625            && (   ( len(tree)==1 && is_list(tree[0]) )
626                || ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ), 
627            "The tree is invalid.")
628    len(tree)==1
629    ?   _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]])
630    :   let( d = norm(p-points[tree[0]]) )
631        len(answers)==k && ( d > last(answers)[1]+tree[1] ) ? answers :
632        let(
633            answers1 = _insert_sorted(answers, k, [tree[0],d]),
634            answers2 = _bt_nearest(p, k, points, tree[2], answers1),
635            answers3 = _bt_nearest(p, k, points, tree[3], answers2)
636         )
637         answers3;
638
639
640function _insert_sorted(list, k, new) =
641    (len(list)==k && new[1]>= last(list)[1]) ? list
642    : [
643        for(entry=list) if (entry[1]<=new[1]) entry,
644        new,
645        for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
646      ];
647
648
649function _insert_many(list, k, newlist,i=0) =
650  i==len(newlist) 
651    ? list
652    : assert(is_vector(newlist[i],2), "The tree is invalid.")
653      _insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
654
655
656
657// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap