1//////////////////////////////////////////////////////////////////////
2// LibFile: joiners.scad
3// Modules for joining separately printed parts including screw together, snap-together and dovetails.
4// Includes:
5// include <BOSL2/std.scad>
6// include <BOSL2/joiners.scad>
7// FileGroup: Parts
8// FileSummary: Joiner shapes for connecting separately printed objects.
9//////////////////////////////////////////////////////////////////////
10
11
12include <rounding.scad>
13
14
15// Section: Half Joiners
16
17
18// Function&Module: half_joiner_clear()
19// Synopsis: Creates a mask to clear space for a {{half_joiner()}}.
20// SynTags: Geom, VNF
21// Topics: Joiners, Parts
22// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
23// Usage: As Module
24// half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS];
25// Usage: As Function
26// vnf = half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]);
27// Description:
28// Creates a mask to clear an area so that a half_joiner can be placed there.
29// Arguments:
30// l = Length of the joiner to clear space for.
31// w = Width of the joiner to clear space for.
32// ang = Overhang angle of the joiner.
33// ---
34// clearance = Extra width to clear.
35// overlap = Extra depth to clear.
36// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
37// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
38// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
39// Example:
40// half_joiner_clear();
41function half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) =
42 let(
43 guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3],
44 path = [
45 [ l/2,-overlap], [ guide.z/2, -guide.y/2-overlap],
46 [-guide.z/2, -guide.y/2-overlap], [-l/2,-overlap],
47 [-l/2, overlap], [-guide.z/2, guide.y/2+overlap],
48 [ guide.z/2, guide.y/2+overlap], [ l/2, overlap],
49 ],
50 dpath = deduplicate(path, closed=true),
51 vnf = linear_sweep(dpath, height=w+clearance*2, center=true, spin=90, orient=RIGHT)
52 ) reorient(anchor,spin,orient, vnf=vnf, p=vnf);
53
54module half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
55{
56 vnf = half_joiner_clear(l=l, w=w, ang=ang, clearance=clearance, overlap=overlap);
57 attachable(anchor,spin,orient, vnf=vnf) {
58 vnf_polyhedron(vnf, convexity=2);
59 children();
60 }
61}
62
63
64// Function&Module: half_joiner()
65// Synopsis: Creates a half-joiner shape to mate with a {{half_joiner2()}} shape..
66// SynTags: Geom, VNF
67// Topics: Joiners, Parts
68// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
69// Usage: As Module
70// half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]) [ATTACHMENTS];
71// Usage: As Function
72// vnf = half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]);
73// Description:
74// Creates a half_joiner object that can be attached to a matching half_joiner2 object.
75// Arguments:
76// l = Length of the half_joiner.
77// w = Width of the half_joiner.
78// ---
79// base = Length of the backing to the half_joiner.
80// ang = Overhang angle of the half_joiner.
81// screwsize = If given, diameter of screwhole.
82// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
83// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
84// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
85// $slop = Printer specific slop value to make parts fit more closely.
86// Examples(FlatSpin,VPD=75):
87// half_joiner(screwsize=3);
88// half_joiner(l=20,w=10,base=10);
89// Example(3D):
90// diff()
91// cuboid(40)
92// attach([FWD,TOP,RIGHT])
93// xcopies(20) half_joiner();
94function half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
95 let(
96 guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3],
97 snap_h = 1,
98 snap = [guide.x+snap_h, 2*snap_h, l*0.6],
99 slope = guide.z/2/(w/8),
100 snap_top = slope * (snap.x-guide.x)/2,
101
102 verts = [
103 [-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2],
104
105 [-w/2, 0,-l/2],
106 [-w/2,-guide.y/2,-guide.z/2],
107 [-w/2,-guide.y/2, guide.z/2],
108 [-w/2, 0,l/2],
109 [ w/2, 0,l/2],
110 [ w/2,-guide.y/2, guide.z/2],
111 [ w/2,-guide.y/2,-guide.z/2],
112 [ w/2, 0,-l/2],
113
114 [-guide.x/2, 0,-l/2],
115 [-guide.x/2,-guide.y/2,-guide.z/2],
116 [-guide.x/2-w/8,-guide.y/2, 0],
117 [-guide.x/2,-guide.y/2, guide.z/2],
118 [-guide.x/2, 0,l/2],
119 [ guide.x/2, 0,l/2],
120 [ guide.x/2,-guide.y/2, guide.z/2],
121 [ guide.x/2+w/8,-guide.y/2, 0],
122 [ guide.x/2,-guide.y/2,-guide.z/2],
123 [ guide.x/2, 0,-l/2],
124
125 [-w/6, -snap.y/2, -snap.z/2],
126 [-w/6, -snap.y/2, -guide.z/2],
127 [-snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)],
128 [-w/6, snap.y/2, -guide.z/2],
129 [-w/6, snap.y/2, -snap.z/2],
130 [-snap.x/2, 0, snap_top-snap.z/2],
131
132 [-w/6, -snap.y/2, snap.z/2],
133 [-w/6, -snap.y/2, guide.z/2],
134 [-snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)],
135 [-w/6, snap.y/2, guide.z/2],
136 [-w/6, snap.y/2, snap.z/2],
137 [-snap.x/2, 0, snap.z/2-snap_top],
138
139 [ w/6, -snap.y/2, snap.z/2],
140 [ w/6, -snap.y/2, guide.z/2],
141 [ snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)],
142 [ w/6, snap.y/2, guide.z/2],
143 [ w/6, snap.y/2, snap.z/2],
144 [ snap.x/2, 0, snap.z/2-snap_top],
145
146 [ w/6, -snap.y/2, -snap.z/2],
147 [ w/6, -snap.y/2, -guide.z/2],
148 [ snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)],
149 [ w/6, snap.y/2, -guide.z/2],
150 [ w/6, snap.y/2, -snap.z/2],
151 [ snap.x/2, 0, snap_top-snap.z/2],
152
153 [-w/6, guide.y/2, -guide.z/2],
154 [-guide.x/2-w/8, guide.y/2, 0],
155 [-w/6, guide.y/2, guide.z/2],
156 [ w/6, guide.y/2, guide.z/2],
157 [ guide.x/2+w/8, guide.y/2, 0],
158 [ w/6, guide.y/2, -guide.z/2],
159
160 if (screwsize != undef) each [
161 for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)],
162 for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)],
163 ]
164 ],
165 faces = [
166 [0,1,2], [2,3,0],
167
168 [0,4,5], [0,5,6], [0,6,1], [1,6,7],
169 [3,10,11], [3,9,10], [2,9,3], [2,8,9],
170
171 [1,7,16], [1,16,17], [1,17,8], [1,8,2],
172 [0,3,11], [0,11,21], [0,21,12], [0,12,4],
173
174 [10,20,11], [20,21,11],
175 [12,13,5], [12,5,4],
176 [9,8,18], [17,18,8],
177 [6,16,7], [6,15,16],
178
179 [19,10,9], [19,9,18], [19,20,10],
180 [6,14,15], [6,5,14], [5,13,14],
181
182 [24,26,25], [26,24,27],
183 [22,27,24], [22,24,23],
184 [22,26,27],
185
186 [30,32,33], [30,31,32],
187 [30,33,28], [30,28,29],
188 [32,28,33],
189
190 [40,41,42], [40,42,45],
191 [45,42,43], [43,44,45],
192 [40,45,44],
193
194 [36,38,37], [36,39,38],
195 [36,35,34], [36,34,39],
196 [39,34,38],
197
198 [12,26,22], [12,22,13], [22,23,13], [12,46,26], [46,25,26],
199 [16,28,32], [16,15,28], [15,29,28], [48,16,32], [32,31,48],
200 [17,38,34], [17,34,18], [18,34,35], [49,38,17], [37,38,49],
201 [21,40,44], [51,21,44], [43,51,44], [20,40,21], [20,41,40],
202
203 [17,16,49], [49,16,48],
204 [21,51,46], [46,12,21],
205
206 [51,50,49], [48,47,46], [46,51,49], [46,49,48],
207
208 if (screwsize == undef) each [
209 [19,36,50], [19,35,36], [19,18,35], [36,37,50], [49,50,37],
210 [19,50,42], [19,42,41], [41,20,19], [50,43,42], [50,51,43],
211 [14,24,47], [14,23,24], [14,13,23], [47,24,25], [46,47,25],
212 [47,30,14], [14,30,29], [14,29,15], [47,31,30], [47,48,31],
213 ] else each [
214 [20,19,56], [20,56,57], [20,57,58], [41,58,42], [20,58,41],
215 [50,51,52], [51,59,52], [51,58,59], [43,42,58], [51,43,58],
216 [49,50,52], [49,52,53], [49,53,54], [37,54,36], [49,54,37],
217 [56,19,18], [18,55,56], [18,54,55], [35,36,54], [18,35,54],
218 [14,64,15], [15,64,63], [15,63,62], [29,62,30], [15,62,29],
219 [48,31,62], [31,30,62], [48,62,61], [48,61,60], [60,47,48],
220 [13,23,66], [23,24,66], [13,66,65], [13,65,64], [64,14,13],
221 [46,47,60], [46,60,67], [46,67,66], [46,66,25], [66,24,25],
222 for (i=[0:7]) let(b=52) [b+i, b+8+i, b+8+(i+1)%8],
223 for (i=[0:7]) let(b=52) [b+i, b+8+(i+1)%8, b+(i+1)%8],
224 ],
225 ],
226 pvnf = [verts, faces],
227 vnf = xrot(90, p=pvnf)
228 ) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf);
229
230module half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
231{
232 vnf = half_joiner(l=l, w=w, base=base, ang=ang, screwsize=screwsize);
233 if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
234 attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
235 half_joiner_clear(l=l, w=w, ang=ang, clearance=1);
236 union();
237 }
238 } else {
239 attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") {
240 vnf_polyhedron(vnf, convexity=12);
241 children();
242 }
243 }
244}
245
246
247// Function&Module: half_joiner2()
248// Synopsis: Creates a half_joiner2 shape to mate with a {{half_joiner()}} shape..
249// SynTags: Geom, VNF
250// Topics: Joiners, Parts
251// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
252// Usage: As Module
253// half_joiner2(l, w, [base=], [ang=], [screwsize=])
254// Usage: As Function
255// vnf = half_joiner2(l, w, [base=], [ang=], [screwsize=])
256// Description:
257// Creates a half_joiner2 object that can be attached to half_joiner object.
258// Arguments:
259// l = Length of the half_joiner.
260// w = Width of the half_joiner.
261// ---
262// base = Length of the backing to the half_joiner.
263// ang = Overhang angle of the half_joiner.
264// screwsize = Diameter of screwhole.
265// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
266// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
267// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
268// Examples(FlatSpin,VPD=75):
269// half_joiner2(screwsize=3);
270// half_joiner2(w=10,base=10,l=20);
271// Example(3D):
272// diff()
273// cuboid(40)
274// attach([FWD,TOP,RIGHT])
275// xcopies(20) half_joiner2();
276function half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
277 let(
278 guide = [w/3, ang_adj_to_opp(ang, l/3)*2, l/3],
279 snap_h = 1,
280 snap = [guide.x+snap_h, 2*snap_h, l*0.6],
281 slope = guide.z/2/(w/8),
282 snap_top = slope * (snap.x-guide.x)/2,
283 s1 = min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2),
284 s2 = max(guide.z/2-snap_top, default(screwsize,0)*1.1/2),
285
286 verts = [
287 [-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2],
288
289 [-w/2, 0,-l/2],
290 [-w/2, guide.y/2,-guide.z/2],
291 [-w/2, guide.y/2, guide.z/2],
292 [-w/2, 0,l/2],
293 [ w/2, 0,l/2],
294 [ w/2, guide.y/2, guide.z/2],
295 [ w/2, guide.y/2,-guide.z/2],
296 [ w/2, 0,-l/2],
297
298 [-guide.x/2, 0,-l/2],
299 [-guide.x/2,-guide.y/2,-guide.z/2],
300 [-guide.x/2-w/8,-guide.y/2, 0],
301 [-guide.x/2,-guide.y/2, guide.z/2],
302 [-guide.x/2, 0,l/2],
303 [ guide.x/2, 0,l/2],
304 [ guide.x/2,-guide.y/2, guide.z/2],
305 [ guide.x/2+w/8,-guide.y/2, 0],
306 [ guide.x/2,-guide.y/2,-guide.z/2],
307 [ guide.x/2, 0,-l/2],
308
309 [-w/6, -snap.y/2, -snap.z/2],
310 [-w/6, -snap.y/2, -guide.z/2],
311 [-snap.x/2, 0, s1],
312 [-w/6, snap.y/2, -guide.z/2],
313 [-w/6, snap.y/2, -snap.z/2],
314 [-snap.x/2, 0, snap_top-snap.z/2],
315
316 [-w/6, -snap.y/2, snap.z/2],
317 [-w/6, -snap.y/2, guide.z/2],
318 [-snap.x/2, 0, s2],
319 [-w/6, snap.y/2, guide.z/2],
320 [-w/6, snap.y/2, snap.z/2],
321 [-snap.x/2, 0, snap.z/2-snap_top],
322
323 [ w/6, -snap.y/2, snap.z/2],
324 [ w/6, -snap.y/2, guide.z/2],
325 [ snap.x/2, 0, s2],
326 [ w/6, snap.y/2, guide.z/2],
327 [ w/6, snap.y/2, snap.z/2],
328 [ snap.x/2, 0, snap.z/2-snap_top],
329
330 [ w/6, -snap.y/2, -snap.z/2],
331 [ w/6, -snap.y/2, -guide.z/2],
332 [ snap.x/2, 0, s1],
333 [ w/6, snap.y/2, -guide.z/2],
334 [ w/6, snap.y/2, -snap.z/2],
335 [ snap.x/2, 0, snap_top-snap.z/2],
336
337 [-w/6, guide.y/2, -guide.z/2],
338 [-guide.x/2-w/8, guide.y/2, 0],
339 [-w/6, guide.y/2, guide.z/2],
340 [ w/6, guide.y/2, guide.z/2],
341 [ guide.x/2+w/8, guide.y/2, 0],
342 [ w/6, guide.y/2, -guide.z/2],
343
344 if (screwsize != undef) each [
345 for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)],
346 for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)],
347 for (a = [0:45:359]) [w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)],
348 for (a = [0:45:359]) [-w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)],
349 ]
350 ],
351 faces = [
352 [0,1,2], [2,3,0],
353
354 [1,7,16], [1,16,17], [1,17,8], [1,8,2],
355 [0,3,11], [0,11,21], [0,21,12], [0,12,4],
356
357 [10,51,11], [51,21,11],
358 [12,46,5], [12,5,4],
359 [9,8,49], [17,49,8],
360 [6,16,7], [6,48,16],
361
362 [50,10,9], [50,9,49], [50,51,10],
363 [6,47,48], [6,5,47], [5,46,47],
364
365 [24,25,26], [26,27,24],
366 [22,24,27], [22,23,24],
367 [22,27,26],
368
369 [30,33,32], [30,32,31],
370 [30,28,33], [30,29,28],
371 [32,33,28],
372
373 [40,42,41], [40,45,42],
374 [45,43,42], [43,45,44],
375 [40,44,45],
376
377 [36,37,38], [36,38,39],
378 [36,34,35], [36,39,34],
379 [39,38,34],
380
381 [12,22,26], [12,13,22], [22,13,23], [12,26,46], [46,26,25],
382 [16,32,28], [16,28,15], [15,28,29], [48,32,16], [32,48,31],
383 [17,34,38], [17,18,34], [18,35,34], [49,17,38], [37,49,38],
384 [21,44,40], [51,44,21], [43,44,51], [20,21,40], [20,40,41],
385
386 [17,16,18], [18,16,15],
387 [21,20,13], [13,12,21],
388
389 [20,19,18], [15,14,13], [13,20,18], [13,18,15],
390
391 if (screwsize == undef) each [
392 [0,4,5], [0,5,6], [0,6,1], [1,6,7],
393 [3,10,11], [3,9,10], [2,9,3], [2,8,9],
394
395 [19,50,36], [19,36,35], [19,35,18], [36,50,37], [49,37,50],
396 [19,42,50], [19,41,42], [41,19,20], [50,42,43], [50,43,51],
397 [14,47,24], [14,24,23], [14,23,13], [47,25,24], [46,25,47],
398 [47,14,30], [14,29,30], [14,15,29], [47,30,31], [47,31,48],
399 ] else each [
400 [3,2,72], [2,71,72], [2,70,71], [2,8,70],
401 [8,9,70], [9,69,70], [9,68,69], [9,10,68],
402 [10,75,68], [10,74,75], [10,11,74],
403 [3,72,73], [3,73,74], [3,74,11],
404
405 [1,0,80], [0,81,80], [0,82,81], [0,4,82],
406 [4,5,82], [5,83,82], [5,76,83], [5,6,76],
407 [6,77,76], [6,78,77], [6,7,78],
408 [7,1,78], [1,79,78], [1,80,79],
409
410 [20,56,19], [20,57,56], [20,41,57], [41,58,57], [41,42,58],
411 [50,52,51], [51,52,59], [43,59,58], [43,58,42], [51,59,43],
412 [49,52,50], [49,53,52], [49,37,53], [37,36,54], [54,53,37],
413 [56,18,19], [18,56,55], [18,55,35], [35,55,54], [36,35,54],
414 [14,15,64], [15,63,64], [15,29,63], [29,62,63], [29,30,62],
415 [31,48,61], [31,61,62], [30,31,62], [48,60,61], [60,48,47],
416 [23,13,65], [65,66,23], [24,23,66], [13,64,65], [64,13,14],
417 [46,60,47], [46,67,60], [46,25,67], [66,67,25], [25,24,66],
418
419 for (i=[0:7]) let(b=52) each [
420 [b+i, b+16+(i+1)%8, b+16+i],
421 [b+i, b+(i+1)%8, b+16+(i+1)%8],
422 ],
423 for (i=[0:7]) let(b=60) each [
424 [b+i, b+16+i, b+16+(i+1)%8],
425 [b+i, b+16+(i+1)%8, b+(i+1)%8],
426 ],
427 ],
428 ],
429 verts2 = [
430 for (i = idx(verts))
431 !approx(s2, verts[54].z)? verts[i] :
432 i==54? [ snap.x/2-0.01, verts[i].y, verts[i].z] :
433 i==58? [ snap.x/2-0.01, verts[i].y, verts[i].z] :
434 i==62? [-snap.x/2+0.01, verts[i].y, verts[i].z] :
435 i==66? [-snap.x/2+0.01, verts[i].y, verts[i].z] :
436 verts[i]
437 ],
438 pvnf = [verts2, faces],
439 vnf = xrot(90, p=pvnf)
440 ) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf);
441
442module half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
443{
444 vnf = half_joiner2(l=l, w=w, base=base, ang=ang, screwsize=screwsize);
445 if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
446 attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
447 half_joiner_clear(l=l, w=w, ang=ang, clearance=1);
448 union();
449 }
450 } else {
451 attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") {
452 vnf_polyhedron(vnf, convexity=12);
453 children();
454 }
455 }
456}
457
458
459
460// Section: Full Joiners
461
462
463// Module: joiner_clear()
464// Synopsis: Creates a mask to clear space for a {{joiner()}} shape.
465// SynTags: Geom
466// Topics: Joiners, Parts
467// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
468// Description:
469// Creates a mask to clear an area so that a joiner can be placed there.
470// Usage:
471// joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS];
472// Arguments:
473// l = Length of the joiner to clear space for.
474// w = Width of the joiner to clear space for.
475// ang = Overhang angle of the joiner.
476// ---
477// clearance = Extra width to clear.
478// overlap = Extra depth to clear.
479// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
480// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
481// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
482// Example:
483// joiner_clear();
484function joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) = no_function("joiner_clear");
485module joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
486{
487 dmnd_height = l*0.5;
488 dmnd_width = dmnd_height*tan(ang);
489 guide_size = w/3;
490 guide_width = 2*(dmnd_height/2-guide_size)*tan(ang);
491
492 attachable(anchor,spin,orient, size=[w, guide_width, l]) {
493 union() {
494 back(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=clearance);
495 fwd(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=-0.01);
496 }
497 children();
498 }
499}
500
501
502
503// Module: joiner()
504// Synopsis: Creates a joiner shape that can mate with another rotated joiner shape.
505// SynTags: Geom
506// Topics: Joiners, Parts
507// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
508// Usage:
509// joiner(l, w, base, [ang=], [screwsize=], [$slop=]) [ATTACHMENTS];
510// Description:
511// Creates a joiner object that can be attached to another joiner object.
512// Arguments:
513// l = Length of the joiner.
514// w = Width of the joiner.
515// base = Length of the backing to the joiner.
516// ang = Overhang angle of the joiner.
517// ---
518// screwsize = If given, diameter of screwhole.
519// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
520// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
521// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
522// $slop = Printer specific slop value to make parts fit more closely.
523// Examples(FlatSpin,VPD=125):
524// joiner(screwsize=3);
525// joiner(l=40, w=10, base=10);
526// Example(3D):
527// diff()
528// cuboid(50)
529// attach([FWD,TOP,RIGHT])
530// zrot_copies(n=2,r=15)
531// joiner();
532function joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) = no_function("joiner");
533module joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
534{
535 if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
536 attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
537 joiner_clear(w=w, l=l, ang=ang, clearance=1);
538 union();
539 }
540 } else {
541 attachable(anchor,spin,orient, size=[w,l,base*2], $tag="keep") {
542 union() {
543 back(l/4) half_joiner(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize);
544 fwd(l/4) half_joiner2(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize);
545 }
546 children();
547 }
548 }
549}
550
551
552
553// Section: Dovetails
554
555// Module: dovetail()
556// Synopsis: Creates a possibly tapered dovetail shape.
557// SynTags: Geom
558// Topics: Joiners, Parts
559// See Also: joiner(), snap_pin(), rabbit_clip()
560//
561// Usage:
562// dovetail(gender, w=|width, h=|height, slide|thickness=, [slope=|angle=], [taper=|back_width=], [chamfer=], [r=|radius=], [round=], [extra=], [$slop=])
563//
564// Description:
565// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
566// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
567// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
568// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
569// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
570// in the positive Y direction. The gender determines whether the shape is meant to be added to your model or
571// differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM;
572// the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN. The dovetails by default
573// have extra extension of 0.01 for unions and differences. You should ensure that attachment is done with overlap=0 to ensure that
574// the sizing and positioning is correct. To adjust the fit, use the $slop variable, which increases the depth and width of
575// the female part of the joint to allow a clearance gap of $slop on each of the three sides.
576//
577// Arguments:
578// gender = A string, "male" or "female", to specify the gender of the dovetail.
579// w / width = Width (at the wider, top end) of the dovetail before tapering
580// h / height = Height of the dovetail (the amount it projects from its base)
581// slide / thickness = Distance the dovetail slides when you assemble it (length of sliding dovetails, thickness of regular dovetails)
582// ---
583// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
584// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
585// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
586// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
587// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
588// r / radius = amount to round over the corners of the joint (Default: no rounding)
589// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
590// $slop = Increase the width of socket by double this amount and depth by this amount to allow adjustment of the fit.
591// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
592// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
593// dovetail("male", width=15, height=8, slide=30);
594// right(20) dovetail("female", width=15, height=8, slide=30);
595// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
596// dovetail("male", w=15, h=8, slide=30, taper=6);
597// right(20) dovetail("female", 15, 8, 30, taper=6); // Same as above
598// Example: A block that can link to itself
599// diff()
600// cuboid([50,30,10]){
601// attach(BACK) dovetail("male", slide=10, width=15, height=8);
602// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8);
603// }
604// Example: Setting the dovetail angle. This is too extreme to be useful.
605// diff()
606// cuboid([50,30,10]){
607// attach(BACK) dovetail("male", slide=10, width=15, height=8, angle=30);
608// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, angle=30);
609// }
610// Example: Adding a chamfer helps printed parts fit together without problems at the corners
611// diff("remove")
612// cuboid([50,30,10]){
613// attach(BACK) dovetail("male", slide=10, width=15, height=8, chamfer=1);
614// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8,chamfer=1);
615// }
616// Example: Rounding the outside corners is another option
617// diff("remove")
618// cuboid([50,30,10]) {
619// attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1, $fn=32);
620// tag("remove") attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1, $fn=32);
621// }
622// Example: Or you can make a fully rounded joint
623// $fn=32;
624// diff("remove")
625// cuboid([50,30,10]){
626// attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1.5, round=true);
627// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1.5, round=true);
628// }
629// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
630// cuboid([50,30,10])
631// attach(TOP) dovetail("male", slide=50, width=18, height=4, back_width=15, spin=90);
632// fwd(35)
633// diff("remove")
634// cuboid([50,30,10])
635// tag("remove") attach(TOP) dovetail("female", slide=50, width=18, height=4, back_width=15, spin=90);
636// Example: A series of dovetails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper.
637// cuboid([50,30,10])
638// attach(BACK) xcopies(10,5) dovetail("male", slide=10, width=7, taper=4, height=4);
639// Example: Mating pin board for a half-blind right angle joint, where the joint only shows on the side but not the front. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
640// diff("remove")
641// cuboid([50,30,10])
642// tag("remove")position(TOP+BACK) xcopies(10,5) dovetail("female", slide=10, width=7, taper=4, height=4, anchor=BOTTOM+FRONT,spin=180);
643function dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) = no_function("dovetail");
644module dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
645{
646 radius = get_radius(r1=radius,r2=r);
647 slide = one_defined([slide,thickness],"slide,thickness");
648 h = one_defined([h,height],"h,height");
649 w = one_defined([w,width],"w,width");
650 orient = is_def(orient) ? orient
651 : gender == "female" ? DOWN
652 : UP;
653 count = num_defined([angle,slope]);
654 count2 = num_defined([taper,back_width]);
655 count3 = num_defined([chamfer, radius]);
656 dummy =
657 assert(count<=1, "Do not specify both angle and slope")
658 assert(count2<=1, "Do not specify both taper and back_width")
659 assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
660 slope = is_def(slope) ? slope
661 : is_def(angle) ? 1/tan(angle)
662 : 6;
663 height_slop = gender == "female" ? get_slop() : 0;
664
665 // Need taper angle for computing width adjustment, but not used elsewhere
666 taper_ang = is_def(taper) ? taper
667 : is_def(back_width) ? atan((back_width-width)/2/slide)
668 : 0;
669 // This is the adjustment factor for width to grow in the direction normal to the dovetail face
670 wfactor = sqrt( 1/slope^2 + 1/cos(taper_ang)^2 );
671 // adjust width for increased height adjust for normal to dovetail surface
672 width_slop = 2*height_slop/slope + 2* height_slop * wfactor;
673 width = w + width_slop;
674 height = h + height_slop;
675 back_width = u_add(back_width, width_slop);
676
677 extra_offset = is_def(taper) ? -extra * tan(taper)
678 : is_def(back_width) ? extra * (back_width-width)/slide/2
679 : 0;
680
681 size = is_def(chamfer) && chamfer>0 ? chamfer
682 : is_def(radius) && radius>0 ? radius
683 : 0;
684 fullsize = round ? [size,size]
685 : gender == "male" ? [size,0]
686 : [0,size];
687
688 type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
689
690 smallend_half = round_corners(
691 move(
692 [0,-slide/2-extra,0],
693 p=[
694 [0, 0, height],
695 [width/2 - extra_offset, 0, height],
696 [width/2 - extra_offset - height/slope, 0, 0 ],
697 [width/2 - extra_offset + height, 0, 0 ]
698 ]
699 ),
700 method=type, cut = fullsize, closed=false
701 );
702
703 smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
704 offset = is_def(taper) ? -slide * tan(taper)
705 : is_def(back_width) ? (back_width-width) / 2
706 : 0;
707 bigend_points = move([offset+2*extra_offset,slide+2*extra,0], p=smallend_points);
708
709 bigenough = all_nonnegative(column(smallend_half,0)) && all_nonnegative(column(bigend_points,0));
710
711 assert(bigenough, "Width of dovetail is not large enough for its geometry (angle and taper");
712
713 //adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach()
714 adjustment = 0; // Default overlap is assumed to be zero
715
716 // This code computes the true normal from which the exact width factor can be obtained
717 // as the x component. Comparing to wfactor above shows that they agree.
718 // pts = [smallend_points[0], smallend_points[1], bigend_points[1],bigend_points[0]];
719 // n = -polygon_normal(pts);
720 // echo(n=n);
721 // echo(invwfactor = 1/wfactor, error = n.x-1/wfactor);
722
723 attachable(anchor,spin,orient, size=[width+2*offset, slide, height]) {
724 down(height/2+adjustment) {
725 //color("red")stroke([pts],width=.1);
726
727 skin(
728 [
729 reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))),
730 reverse(concat(bigend_points, xflip(p=reverse(bigend_points))))
731 ],
732 slices=0, convexity=4
733 );
734 }
735 children();
736 }
737}
738
739
740// Section: Tension Clips
741
742// h is total height above 0 of the nub
743// nub extends below xy plane by distance nub/2
744module _pin_nub(r, nub, h)
745{
746 L = h / 4;
747 rotate_extrude(){
748 polygon(
749 [[ 0,-nub/2],
750 [-r,-nub/2],
751 [-r-nub, nub/2],
752 [-r-nub, nub/2+L],
753 [-r, h],
754 [0, h]]);
755 }
756}
757
758
759module _pin_slot(l, r, t, d, nub, depth, stretch) {
760 yscale(4)
761 intersection() {
762 translate([t, 0, d + t / 4])
763 _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
764 translate([-t, 0, d + t / 4])
765 _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
766 }
767 cube([2 * r, depth, 2 * l], center = true);
768 up(l)
769 zscale(stretch)
770 ycyl(r = r, h = depth);
771}
772
773
774module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed)
775{
776 extra = 0.02; // This sets the extra extension below the socket bottom
777 // so that difference() works without issues
778 rPoint = r / sqrt(2);
779 down(extra) cylinder(r = r, h = lStraight + extra);
780 up(lStraight) {
781 zscale(stretch) {
782 hull() {
783 sphere(r = r);
784 if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint/stretch);
785 }
786 }
787 }
788 up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d);
789}
790
791function _pin_size(size) =
792 is_undef(size) ? [] :
793 let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"]))
794 assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"")
795 size=="standard" || size=="large" ?
796 struct_set([], ["length", 10.8,
797 "diameter", 7,
798 "snap", 0.5,
799 "nub_depth", 1.8,
800 "thickness", 1.8,
801 "preload", 0.2]):
802 size=="medium" ?
803 struct_set([], ["length", 8,
804 "diameter", 4.6,
805 "snap", 0.45,
806 "nub_depth", 1.5,
807 "thickness", 1.4,
808 "preload", 0.2]) :
809 size=="small" ?
810 struct_set([], ["length", 6,
811 "diameter", 3.2,
812 "snap", 0.4,
813 "nub_depth", 1.2,
814 "thickness", 1.0,
815 "preload", 0.16]) :
816 size=="tiny" ?
817 struct_set([], ["length", 4,
818 "diameter", 2.5,
819 "snap", 0.25,
820 "nub_depth", 0.9,
821 "thickness", 0.8,
822 "preload", 0.1]):
823 undef;
824
825
826// Module: snap_pin()
827// Synopsis: Creates a snap-pin that can slot into a {{snap_pin_socket()}} to join two parts.
828// SynTags: Geom
829// Topics: Joiners, Parts
830// See Also: snap_pin_socket(), joiner(), dovetail(), snap_pin(), rabbit_clip()
831// Usage:
832// snap_pin(size, [pointed=], [anchor=], [spin=], [orient]=) [ATTACHMENTS];
833// snap_pin(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, thickness=, [clearance=], [preload=], [pointed=]) [ATTACHMENTS];
834// Description:
835// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
836// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
837// override the standard parameters by specifying other ones. The pins have flat sides so they can
838// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
839// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
840// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
841// .
842// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
843// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
844// .
845// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
846// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
847// and distributed under the Creative Commons - Attribution - Share Alike License
848// Arguments:
849// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
850// ---
851// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
852// r/radius = radius of the pin
853// d/diameter = diameter of the pin
854// l/length = length of the pin
855// nub_depth = the distance of the nub from the base of the pin
856// snap = how much snap the pin provides (the nub projection)
857// thickness = thickness of the pin walls
858// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
859// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
860// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
861// Example: Pin in native orientation
862// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
863// Example: Pins oriented for printing
864// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
865function snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) =no_function("snap_pin");
866module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) {
867 preload_default = 0.2;
868 sizedat = _pin_size(size);
869 radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
870 length = first_defined([l,length,struct_val(sizedat,"length")]);
871 snap = first_defined([snap, struct_val(sizedat,"snap")]);
872 thickness = first_defined([thickness, struct_val(sizedat,"thickness")]);
873 nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
874 preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]);
875
876 nubscale = 0.9; // Mysterious arbitrary parameter
877
878 // The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
879 // If the point is enabled the cap length is instead 2*r
880 // preload shrinks the length, bringing the nubs closer together
881
882 rInner = radius - clearance;
883 stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced.
884 lStraight = length - sqrt(2) * radius - clearance;
885 lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius);
886 attachable(anchor=anchor,spin=spin, orient=orient,
887 size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){
888 zflip_copy()
889 difference() {
890 intersection() {
891 cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true);
892 _pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed);
893 }
894 _pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch);
895 }
896 children();
897 }
898}
899
900// Module: snap_pin_socket()
901// Synopsis: Creates a snap-pin socket for a {{snap_pin()}} to slot into.
902// SynTags: Geom
903// Topics: Joiners, Parts
904// See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip()
905// Usage:
906// snap_pin_socket(size, [fixed=], [fins=], [pointed=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
907// snap_pin_socket(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, [fixed=], [pointed=], [fins=]) [ATTACHMENTS];
908// Description:
909// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
910// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
911// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
912// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
913// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
914// The socket extends 0.02 extra below its bottom anchor point so that differences will work correctly. (You must have $overlap smaller than 0.02 in
915// attach or the socket will be beneath the surface of the parent object.)
916// .
917// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
918// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
919// Arguments:
920// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
921// ---
922// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
923// r/radius = radius of the pin
924// d/diameter = diameter of the pin
925// l/length = length of the pin
926// nub_depth = the distance of the nub from the base of the pin
927// snap = how much snap the pin provides (the nub projection)
928// fixed = if true the pin cannot rotate, if false it can. Default: true
929// pointed = if true the socket has a pointed tip. Default: true
930// fins = if true supporting fins are included. Default: false
931// Example: The socket shape itself in native orientation.
932// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
933// Example: A spinning socket with fins:
934// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
935// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
936// $fn=40;
937// diff("socket") cuboid([20,20,20])
938// tag("socket"){
939// attach(TOP) snap_pin_socket("standard");
940// position(TOP+FRONT)snap_pin_socket("standard");
941// }
942function snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) = no_function("snap_pin_socket");
943module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) {
944 sizedat = _pin_size(size);
945 radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
946 length = first_defined([l,length,struct_val(sizedat,"length")]);
947 snap = first_defined([snap, struct_val(sizedat,"snap")]);
948 nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
949
950 tip = pointed ? sqrt(2) * radius : radius;
951 lPin = length + (pointed?(2-sqrt(2))*radius:0);
952 lStraight = lPin - (pointed?sqrt(2)*radius:radius);
953 attachable(anchor=anchor,spin=spin,orient=orient,
954 size=[2*(radius+snap),radius*sqrt(2),lPin])
955 {
956 down(lPin/2)
957 intersection() {
958 cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true);
959 union() {
960 _pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
961 if (fins)
962 up(lStraight){
963 cube([2 * radius, 0.01, 2 * tip], center = true);
964 cube([0.01, 2 * radius, 2 * tip], center = true);
965 }
966 }
967 }
968 children();
969 }
970}
971
972
973
974// Module: rabbit_clip()
975// Synopsis: Creates a rabbit-eared clip that can snap into a slot.
976// SynTags: Geom
977// Topics: Joiners, Parts
978// See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip()
979// Usage:
980// rabbit_clip(type, length, width, snap, thickness, depth, [compression=], [clearance=], [lock=], [lock_clearance=], [splineteps=], [anchor=], [orient=], [spin=]) [ATTACHMENTS];
981// Description:
982// Creates a clip with two flexible ears to lock into a mating socket, or create a mask to produce the appropriate
983// mating socket. The clip can be made to insert and release easily, or to hold much better, or it can be
984// created with locking flanges that will make it very hard or impossible to remove. Unlike the snap pin, this clip
985// is rectangular and can be made at any height, so a suitable clip could be very thin. It's also possible to get a
986// solid connection with a short pin.
987// .
988// The type parameters specifies whether to make a clip, a socket mask, or a double clip. The length is the
989// total nominal length of the clip. (The actual length will be very close, but not equal to this.) The width
990// gives the nominal width of the clip, which is the actual width of the clip at its base. The snap parameter
991// gives the depth of the clip sides, which controls how easy the clip is to insert and remove. The clip "ears" are
992// made over-wide by the compression value. A nonzero compression helps make the clip secure in its socket.
993// The socket's width and length are increased by the clearance value which creates some space and can compensate
994// for printing inaccuracy. The socket will be slightly longer than the nominal width. The thickness is the thickness
995// curved line that forms the clip. The clip depth is the amount the basic clip shape is extruded. Be sure that you
996// make the socket with a larger depth than the clip (try 0.4 mm) to allow ease of insertion of the clip. The clearance
997// value does not apply to the depth. The splinesteps parameter increases the sampling of the clip curves.
998// .
999// By default clips appear with orient=UP and sockets with orient=DOWN. The clips and sockets extend 0.02 units below
1000// their base so that unions and differences will work without trouble, but be sure that the attach overlap is smaller
1001// than 0.02.
1002// .
1003// The first figure shows the dimensions of the rabbit clip. The second figure shows the clip in red overlayed on
1004// its socket in yellow. The left clip has a nonzero clearance, so its socket is bigger than the clip all around.
1005// The right hand locking clip has no clearance, but it has a lock clearance, which provides some space behind
1006// the lock to allow the clip to fit. (Note that depending on your printer, this can be set to zero.)
1007// Figure(2DMed,NoAxes):
1008// snap=1.5;
1009// comp=0.75;
1010// mid = 8.053; // computed in rabbit_clip
1011// tip = [-4.58,18.03];
1012// translate([9,3]){
1013// back_half()
1014// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK);
1015// color("blue"){
1016// stroke([[6,0],[6,18]],width=0.1);
1017// stroke([[6+comp, 12], [6+comp, 18]], width=.1);
1018// }
1019// color("red"){
1020// stroke([[6-snap,mid], [6,mid]], endcaps="arrow2",width=0.15);
1021// translate([6+.4,mid-.15])text("snap",size=1,valign="center");
1022// translate([6+comp/2,19.5])text("compression", size=1, halign="center");
1023// stroke([[6+comp/2,19.3], [6+comp/2,17.7]], endcap2="arrow2", width=.15);
1024// fwd(1.1)text("width",size=1,halign="center");
1025// xflip_copy()stroke([[2,-.7], [6,-.7]], endcap2="arrow2", width=.15);
1026// move([-6.7,mid])rot(90)text("length", size=1, halign="center");
1027// stroke([[-7,10.3], [-7,18]], width=.15, endcap2="arrow2");
1028// stroke([[-7,0], [-7,5.8]], width=.15,endcap1="arrow2");
1029// stroke([tip, tip-[0,1]], width=.15);
1030// move([tip.x+2,19.5])text("thickness", halign="center",size=1);
1031// stroke([[tip.x+2, 19.3], tip+[.1,.1]], width=.15, endcap2="arrow2");
1032// }
1033// }
1034//
1035// Figure(2DMed,NoAxes):
1036// snap=1.5;
1037// comp=0;
1038// translate([29,3]){
1039// back_half()
1040// rabbit_clip("socket", width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK,lock=true);
1041// color("red")back_half()
1042// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
1043// orient=BACK,lock=true,lock_clearance=1);
1044// }
1045// translate([9,3]){
1046// back_half()
1047// rabbit_clip("socket", clearance=.5,width=12, length=18, depth=1, thickness = 1,
1048// compression=comp, snap=snap, orient=BACK,lock=false);
1049// color("red")back_half()
1050// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
1051// orient=BACK,lock=false,lock_clearance=1);
1052// }
1053// Arguments:
1054// type = One of "pin", "socket", "male", "female" or "double" to specify what to make.
1055// length = nominal clip length
1056// width = nominal clip width
1057// snap = depth of hollow on the side of the clip
1058// thickness = thickness of the clip "line"
1059// depth = amount to extrude clip (give extra room for the socket, about 0.4mm)
1060// ---
1061// compression = excess width at the "ears" to lock more tightly. Default: 0.1
1062// clearance = extra space in the socket for easier insertion. Default: 0.1
1063// lock = set to true to make a locking clip that may be irreversible. Default: false
1064// lock_clearance = give clearance for the lock. Default: 0
1065// splinesteps = number of samples in the curves of the clip. Default: 8
1066// anchor = anchor point for clip
1067// orient = clip orientation. Default: UP for pins, DOWN for sockets
1068// spin = spin the clip. Default: 0
1069//
1070// Example: Here are several sizes that work printed in PLA on a Prusa MK3, with default clearance of 0.1 and a depth of 5
1071// module test_pair(length, width, snap, thickness, compression, lock=false)
1072// {
1073// depth = 5;
1074// extra_depth = 10;// Change this to 0.4 for closed sockets
1075// cuboid([max(width+5,12),12, depth], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
1076// attach(BACK)
1077// rabbit_clip(type="pin",length=length, width=width,snap=snap,thickness=thickness,depth=depth,
1078// compression=compression,lock=lock);
1079// right(width+13)
1080// diff("remove")
1081// cuboid([width+8,max(12,length+2),depth+3], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
1082// tag("remove")
1083// attach(BACK)
1084// rabbit_clip(type="socket",length=length, width=width,snap=snap,thickness=thickness,
1085// depth=depth+extra_depth, lock=lock,compression=0);
1086// }
1087// left(37)ydistribute(spacing=28){
1088// test_pair(length=6, width=7, snap=0.25, thickness=0.8, compression=0.1);
1089// test_pair(length=3.5, width=7, snap=0.1, thickness=0.8, compression=0.1); // snap = 0.2 gives a firmer connection
1090// test_pair(length=3.5, width=5, snap=0.1, thickness=0.8, compression=0.1); // hard to take apart
1091// }
1092// right(17)ydistribute(spacing=28){
1093// test_pair(length=12, width=10, snap=1, thickness=1.2, compression=0.2);
1094// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
1095// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
1096// }
1097// Example: Double clip to connect two sockets
1098// rabbit_clip("double",length=8, width=7, snap=0.75, thickness=0.8, compression=0.2,depth=5);
1099// Example: A modified version of the clip that acts like a backpack strap clip, where it locks tightly but you can squeeze to release.
1100// cuboid([25,15,5],anchor=BOTTOM)
1101// attach(BACK)rabbit_clip("pin", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5, lock_clearance=3);
1102// left(32)
1103// diff("remove")
1104// cuboid([30,30,11],orient=BACK,anchor=BACK){
1105// tag("remove")attach(BACK)rabbit_clip("socket", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5.5, lock_clearance=3);
1106// xflip_copy()
1107// position(FRONT+LEFT)
1108// xscale(0.8)
1109// tag("remove")zcyl(l=20,r=13.5, $fn=64);
1110// }
1111
1112function rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0,
1113 splinesteps=8, anchor, orient, spin=0) = no_function("rabbit_clip");
1114
1115module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0,
1116 splinesteps=8, anchor, orient, spin=0)
1117{
1118 legal_types = ["pin","socket","male","female","double"];
1119 check =
1120 assert(is_num(width) && width>0,"Width must be a positive value")
1121 assert(is_num(length) && length>0, "Length must be a positive value")
1122 assert(is_num(thickness) && thickness>0, "Thickness must be a positive value")
1123 assert(is_num(snap) && snap>=0, "Snap must be a non-negative value")
1124 assert(is_num(depth) && depth>0, "Depth must be a positive value")
1125 assert(is_num(compression) && compression >= 0, "Compression must be a nonnegative value")
1126 assert(is_bool(lock))
1127 assert(is_num(lock_clearance))
1128 assert(in_list(type,legal_types),str("type must be one of ",legal_types));
1129 if (type=="double") {
1130 attachable(size=[width+2*compression, depth, 2*length], anchor=default(anchor,BACK), spin=spin, orient=default(orient,BACK)){
1131 union(){
1132 rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
1133 lock=lock, anchor=BOTTOM, orient=UP);
1134 rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
1135 lock=lock, anchor=BOTTOM, orient=DOWN);
1136 cuboid([width-thickness, depth, thickness]);
1137 }
1138 children();
1139 }
1140 } else {
1141 anchor = default(anchor,BOTTOM);
1142 is_pin = in_list(type,["pin","male"]);
1143 //default_overlap = 0.01 * (is_pin?1:-1); // Shift by this much to undo default overlap
1144 default_overlap = 0;
1145 extra = 0.02; // Amount of extension below nominal based position for the socket, must exceed default overlap of 0.01
1146 clearance = is_pin ? 0 : clearance;
1147 compression = is_pin ? compression : 0;
1148 orient = is_def(orient) ? orient
1149 : is_pin ? UP
1150 : DOWN;
1151 earwidth = 2*thickness+snap;
1152 point_length = earwidth/2.15;
1153 // The adjustment is using cos(theta)*earwidth/2 and sin(theta)*point_length, but the computation
1154 // is obscured because theta is atan(length/2/snap)
1155 scaled_len = length - 0.5 * (earwidth * snap + point_length * length) / sqrt(sqr(snap)+sqr(length/2));
1156 bottom_pt = [0,max(scaled_len*0.15+thickness, 2*thickness)];
1157 ctr = [width/2,scaled_len] + line_normal([width/2-snap, scaled_len/2], [width/2, scaled_len]) * earwidth/2;
1158 inside_pt = circle_circle_tangents(0, bottom_pt, earwidth/2, ctr)[0][1];
1159 sidepath =[
1160 [width/2,0],
1161 [width/2-snap,scaled_len/2],
1162 [width/2+(is_pin?compression:0), scaled_len],
1163 ctr - point_length * line_normal([width/2,scaled_len], inside_pt),
1164 inside_pt
1165 ];
1166 fullpath = concat(
1167 sidepath,
1168 [bottom_pt],
1169 reverse(apply(xflip(),sidepath))
1170 );
1171 dummy2 = assert(fullpath[4].y < fullpath[3].y, "Pin is too wide for its length");
1172
1173 snapmargin = -snap + last(sidepath).x;// - compression;
1174 if (is_pin){
1175 if (snapmargin<0) echo("WARNING: The snap is too large for the clip to squeeze to fit its socket")
1176 echo(snapmargin=snapmargin);
1177 }
1178 // Force tangent to be vertical at the outer edge of the clip to avoid overshoot
1179 fulltangent = list_set(path_tangents(fullpath, uniform=false),[2,8], [[0,1],[0,-1]]);
1180
1181 subset = is_pin ? [0:10] : [0,1,2,3, 7,8,9,10]; // Remove internal points from the socket
1182 tangent = select(fulltangent, subset);
1183 path = select(fullpath, subset);
1184
1185 socket_smooth = .04;
1186 pin_smooth = [.075, .075, .15, .12, .06];
1187 smoothing = is_pin
1188 ? concat(pin_smooth, reverse(pin_smooth))
1189 : let(side_smooth=select(pin_smooth, 0, 2))
1190 concat(side_smooth, [socket_smooth], reverse(side_smooth));
1191 bez = path_to_bezpath(path,relsize=smoothing,tangents=tangent);
1192 rounded = bezpath_curve(bez,splinesteps=splinesteps);
1193 bounds = pointlist_bounds(rounded);
1194 extrapt = is_pin ? [] : [rounded[0] - [0,extra]];
1195 finalpath = is_pin ? rounded
1196 : let(withclearance=offset(rounded, r=-clearance))
1197 concat( [[withclearance[0].x,-extra]],
1198 withclearance,
1199 [[-withclearance[0].x,-extra]]);
1200 attachable(size=[bounds[1].x-bounds[0].x, depth, bounds[1].y-bounds[0].y], anchor=anchor, spin=spin, orient=orient){
1201 xrot(90)
1202 translate([0,-(bounds[1].y-bounds[0].y)/2+default_overlap,-depth/2])
1203 linear_extrude(height=depth, convexity=10) {
1204 if (lock)
1205 xflip_copy()
1206 right(clearance)
1207 polygon([sidepath[1]+[-thickness/10,lock_clearance],
1208 sidepath[2]-[thickness*.75,0],
1209 sidepath[2],
1210 [sidepath[2].x,sidepath[1].y+lock_clearance]]);
1211 if (is_pin)
1212 offset_stroke(finalpath, width=[thickness,0]);
1213 else
1214 polygon(finalpath);
1215 }
1216 children();
1217 }
1218 }
1219}
1220
1221
1222
1223// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap